
Lightening CNN architectures by

regularization driven weights’ pruning

Giovanni Bonetta1 and Rossella Cancelliere1

1- University of Turin - Department of Computer Science
via Pessinetto 12 - 10149 Turin, Italy

Abstract. Deep learning models are getting increasingly big, leading to-
wards overparametrized architectures with high computational and storage
requirements. This hinders the possibility to train/deploy them on IoT or
mobile devices, while also creating concerns about their environmental fin-
gerprint. We propose a regularization technique which allows to selectively
shrink the norm of non significant weights in order to subsequently prune
them, generating highly compressed models. We tested the proposed tech-
nique on three well known image classification tasks, obtaining results on
par or better than competitors in terms of sparsity and metrics.

1 Introduction

Nowadays big deep learning models are constantly pushing the limits of what
can be achieved in the Artificial Intelligence domain, but that comes at the price
of increasing the number of parameters, which now can even get to hundreds
of billions. This request for huge resources leads to increasing training and
deploying costs and worsens the ecological impact on the planet. A sensible
way to tackle the problem of model’s complexity and dimensions is via weight
sparsity, which is the property a model has when a substantial number of its
weights have zero value. Sparsity allows to find the core, salient parameters of the
network and is well tolerated by deep architectures, as shown for example in [1]
and [2]. The advantages are: smaller computational and storage requirements,
and improved performance through overfitting control.

Historically techniques based on the L2 regularization are among the most
popular ways to achieve highly sparsifying models. A central drawback of such
algorithms is that they do not directly account for weight relevance in the neural
architecture (see [3, 4]), but the entire set of parameters is forced towards very
small values.

Aiming at finding a solution to this issue, in this paper we outline and im-
plement a new loss functional which, thanks to a suitable regularization term,
allows to account for the actual contribution a weight has on the model loss.
As a result, the norm of non relevant weights is selectively decreased, while a
standard weight decay update is done for relevant ones. So doing the defini-
tion of ad hoc weights’ updates (see [1, 3, 4, 5]) is no more required because
weights’ shrinking directly follows from loss optimization. Shrunk weights are
then pruned in order to sparsify the neural architecture.

One important aspect of our proposed regularization term is that it can be

205

ESANN 2022 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 5-7 October 2022, i6doc.com publ., ISBN 978287587084-1.
Available from http://www.i6doc.com/en/.

used in any loss functional regardless of its form, and constitutes a unified frame-
work potentially exploitable for many different architectures and applications.

We show the effectiveness of our method sparsifying different convolutional
neural models, establishing, at the best of our knowledge, new state-of-the-art
performance in two out of three image classification tasks.

The paper is organized as follows: in Section 2 the theoretical foundations
and a detailed description of our pruning algorithm are presented; Sections 3
describes the datasets and analyzes implementation and results.

2 The pruning method: theory and algorithm

L2 norm penalty, also known as Tikhonov regularization [6] or weight decay
is often used to turn an original unstable, ill-posed problem into a well-posed
one. In a neural context, the weight decay loss L̃ depends on each weight wn

i,j

belonging to layer n and connecting neurons i and j:

L̃(w̄) = L(w̄) + λ‖w̄‖2 = L(w̄) + λ
∑

n,i,j

|wn
i,j |

2.

w̄ is the vector whose elements are wn
i,j and λ is the regularization parameter.

In this context we propose a new loss functional L̂(w̄), characterized by a
coefficient that measures how much the final loss value is influenced by modifi-
cation of a weight. Consequently, the magnitudes of only those weights which
are not important for the final loss are selectively shrunk.

In order to reach this objective we focus on the quantity | ∂L
∂wn

i,j

|: small deriva-

tive values indicate that changes in the weights do not influence the final loss
value while large derivative values characterize relevant weights that do not need
to be shrunk. We therefore propose the following modified loss functional:

L̂(w̄) = L(w̄) + λ
∑

n,i,j

C · |wn
i,j |

2, C ≡
1

1 + | ∂L
∂wn

i,j

|
∈ (0, 1]

where the coefficient C assumes values near 1/0 for non relevant/relevant weights.
If for example stochastic gradient descent is used to optimize L̂, the new weights’
update rule is:

∆wn
i,j ≡ −η

∂L̂

∂wn
i,j

= −η
∂L

∂wn
i,j

− 2ηλ
wn

i,j

1 + | ∂L
∂wn

i,j

|
+ηλ|wn

i,j |
2

−sgn(| ∂2L
∂wn

i,j
2 |)

(1 + | ∂L
∂wn

i,j

|)2
(1)

(η: learning rate, sgn: sign function). If the second-order derivative term is
neglected, as usually done in second order derivative methods, eq. (1) becomes:

∆wn
i,j = −η

∂L

∂wn
i,j

− 2ηλ
wn

i,j

1 + | ∂L
∂wn

i,j

|
(2)

206

ESANN 2022 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 5-7 October 2022, i6doc.com publ., ISBN 978287587084-1.
Available from http://www.i6doc.com/en/.

Different weights’ updates are made in the two cases determined by the
extreme values of | ∂L

∂wn
i,j

|:

1) | ∂L
∂wn

i,j

| ∼ 0: in this case the weight is not relevant. The first term in eq. (2) is

roughly zero, and the update rule becomes ∆wn
i,j(t) ≃ −2ηλwn

i,j . The weight is
actually driven to zero, because if wn

i,j > 0 then ∆wn
i,j < 0, so that the norm of a

positive weight is decreased at each iteration. Similarly, the norm of a negative
weight is also reduced.
2) | ∂L

∂wn
i,j

| ≫ 0 : in this case the weight is relevant. The second term in eq. (2) is

roughly zero, so a classic update of wn
i,j is performed.

Our pruning algorithm follows these steps:
1. We get a checkpoint to finetune from, founding it in literature or training

it on our own. A randomly initialized checkpoint can be used too.
2. The checkpoint is finetuned using our regularized loss. We remark that

in this step any optimizer can be used and that gradients have to be computed
twice for weight updates; a computational overhead is however common to many
approaches that aim to select the weights to be pruned (see [2, 3, 4, 5]). Model
validation performance is evaluated each evaluation interval steps, and we:

- prune. If the validation accuracy is higher than a user-defined lower-bound,
chosen as slightly lower than the state-of-the-art performance, a fixed percentage
(pruning-percentage) of the weights with lowest magnitude is pruned.

- not prune. If the validation performance is lower than the user-defined
lower-bound the finetuning proceeds normally.

3. Step 2 is iteratively repeated until the model reaches a validation perfor-
mance plateau.

4. We perform a final finetuning phase without regularization, aiming to get
the best performing checkpoint.

In order to avoid accuracy plateau we decay λ exponentially between two val-
idation assessments. Grid search is used to set the hyperparameters for training
and finetuning.

3 Implementation details and results

We experiment on three computer vision datasets often used in sparsity research:
MNIST [7], Fashion-MNIST [8] and ImageNet [9].

We used one Nvidia TITAN RTX 24Gb GPU, spending ∼ 5’ for training
MNIST and Fashion-MNIST, and ∼ 7 days for training ImageNet. The used
implementation framework is Pytorch (version 1.10.2).

Code is available at https://github.com/giobin/esann22 sparsity.
As a first result, in table 1 we show the disk space occupation after processing

the models with BZIP21; the sparsification induced by our algorithm is exploited
for high compression. Note that the compression is at least 9x for VGG-16 and
15x for LeNet-5.

1https://www.sourceware.org/bzip2/

207

ESANN 2022 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 5-7 October 2022, i6doc.com publ., ISBN 978287587084-1.
Available from http://www.i6doc.com/en/.

Lenet5 (MNIST) Lenet5 (F-MNIST) VGG-16 (ImageNet)
Unpruned 1.6 MB 1.6 MB 525.5 MB
Pruned 0.07 MB 0.10 MB 58.9 MB

Table 1: Disk space dimensions of pruned/unpruned models.

LeNet-5 on MNIST

This network, originally introduced by [11], has been lately modified and its
more used version consists of a Convolution (Conv) layer with 6 5x5 filters, a 2x2
Pooling layer, a Conv layer with 10 5x5 filters, another 2x2 Pooling layer and
two fully connected (FC) layers of sizes (800, 500) and (500, 10) respectively, for
a total of 431080 model weights. We stick with this choice in order to compare
with state-of-the-art results.

Model epochs batch η optim. λ
lower
bound

pruning
percentage

eval.
interval

LeNet 120 100 0.001 Adam 0.001 98.7 4% 250
VGG16 30 100 0.0001 SGD 1e-4 68.5 1% 2500

Table 2: Hyperparameters’ values. Lower bound, pruning percentage and eval.
interval parameters have been defined in the previous Section.

For this dataset the initial training phase can be skipped directly regular-
izing and pruning a randomly initialized checkpoint, then we finetune without
regularization for 5 epochs. Hyperparameter values are resumed in table 2.

Table 3 compares our results with state-of-the-art, not sparsified checkpoint
(Baseline), and recent results obtained for this task in terms of “Accuracy” of
the classification and of “Sparsity”, i.e. the percentage of pruned weights w.r.t.
the initial number of weights. From this definition follows that (100 - Sparsity) is
the percentage of remaining weights. We also report the percentage of “Residual
Weights” for each layer of the pruned architecture, that is always the lowest w.r.t
all competitors, with the only exception of Conv1 layer for Sparse VD.

Methods Residual Weights (%) Accuracy (%) Sparsity (%)
Conv1 Conv2 FC1 FC2

Baseline 100 100 100 100 99.32 –
Han et al., 2015 [1] 66 12 8 19 99.23 91.6
Tart. et al., 2018 [3] 67.6 11.8 0.9 31.0 99.22 98.0
Ullr. et al., 2017 [2] - - - - 99.03 99.4
Tart. et al., 2021 [4] 22 2.38 0.22 5.98 99.21 99.6
Sparse VD [12] 33 2 0.2 5 99.25 99.6
Our method 30 2 0.1 3.8 99.22 99.7

Table 3: Test results for LeNet-5 architecture on MNIST.

Nowadays accuracy and sparsification performance on MNIST are close to
the best possible for all techniques. Our method’s non zero residual weights are

208

ESANN 2022 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 5-7 October 2022, i6doc.com publ., ISBN 978287587084-1.
Available from http://www.i6doc.com/en/.

Methods Residual Weights (%) Accuracy (%) Sparsity (%)
Conv1 Conv2 FC1 FC2

Baseline 100 100 100 100 91.90 –
Tart. et al., 2018 [3] 76.2 32.56 6.5 44.02 91.50 91.5
Han et al., 2015 [1] - - - - 91.56 93.0
Tart. et al., 2021 [4] 78.6 26.13 2.88 32.66 91.53 95.7
Our method 78.9 18.85 1.52 6.7 91.67 96.9

Table 4: Test results for LeNet-5 architecture on Fashion-MNIST.

less than 1,5k, mainly because of the fully connected layers sparsification. We
can note that we obtain almost the same accuracy of Han et al., but with 8%
less weights.

LeNet-5 on Fashion-MNIST

We train for 24 epochs to have the initial checkpoint for Fashion-MNIST2.
For finetuning with regularization we use the same MNIST hyperparameters
(listed in table 2), except for lower-bound = 89.7 and epochs = 81; finally, we
finetune without regularization for 50 additional epochs. Results are shown in
table 4, and we can see that our method reaches the best performance both in
terms of accuracy and sparsity.

VGG-16 on ImageNet

The model is composed by 13 Convolutional layers with 3x3 filters followed by
Relu activations. These layers are interleaved by 5 MaxPooling layers. Finally,
an AdaptiveAveragePool layer with 7x7 dimension is used before a sequence of 3
Linear layers with Relu activations which lead to the 1000-dimensional output,
for a total of 138,357,544 weights. In our experiment on ImageNet 3 we start a
regularized finetuning from a pretrained checkpoint4 using the hyperparameters
shown in table 2. We further finetune for 30 epochs without regularization to
get the best accuracy.

Method Residual Weights (%) Accuracy (%) Sparsity (%)
Convolutional FC

Baseline 100 100 71.30 –
Han et al., 2015 [1] 32.77 4.61 68.66 92.5
Tart. et al., 2018 [3] 56.49 2.56 69.08 92.9

Our model 38.12 4.01 69.48 92.6

Table 5: Test results for VGG-16 architecture on ImageNet.

270,000 28x28 gray-scale images of fashion products from Zalando website. train/test
60k/10k.

314 million hand-annotated RGB images arranged according to the WordNet [10] noun
hierarchy with over 20k categories. One million of those images come with bounding boxes.
The average image size is 469x387 pixels, but it is usually down-sampled to 256x256.

4https://pytorch.org/vision/stable/models/generated/torchvision.models.vgg16.html#
torchvision.models.VGG16 Weights

209

ESANN 2022 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 5-7 October 2022, i6doc.com publ., ISBN 978287587084-1.
Available from http://www.i6doc.com/en/.

Results show that VGG-16 is highly overparameterized for the task, since all
methods are able to prune almost 93% of the network weights, shrinking them
from ∼138M to less than 10M. Our method confirms its ability to scale to a
bigger model (∼100M weights) obtaining the best accuracy among the shown
methods with a sparsity percentage very close to the best one.

4 Conclusions

In this paper we proposed a new sparsification technique that focus on pruning
non relevant weights, with results on par or better than competitors in terms
of sparsity and accuracy. Besides, promising performances are obtained also
measuring the architectural compression of the final models. As future work, we
plan to apply these ideas to other tasks and architectures, for instance in the
framework of natural language processing.

References

[1] S. Han, J. Pool, J. Tran, W. J. Dally, Learning both weights and connections for efficient
neural network, in: C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, R. Garnett
(Eds.), Advances in Neural Information Processing Systems (NIPS) 28, Curran Asso-
ciates, Inc., Montreal, Canada, 2015, pp. 1135–1143.

[2] K. Ullrich, E. Meeds, M. Welling, Soft weight-sharing for neural network compression,
in: 5th International Conference on Learning Representations, (ICLR), Toulon, France,
OpenReview.net, 2017.

[3] E. Tartaglione, S. Lepsø y, A. Fiandrotti, G. Francini, Learning sparse neural networks via
sensitivity-driven regularization, in: S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, R. Garnett (Eds.), Advances in Neural Information Processing Systems
(NIPS), 31, Curran Associates, Inc., Montreal, Canada, 2018.

[4] E. Tartaglione, A. Bragagnolo, A. Fiandrotti, M. Grangetto, LOss-Based SensiTivity
rEgulaRization: towards deep sparse neural networks, Neural Networks 146, 2022, pp.
230–237.

[5] A. N. Gomez, I. Zhang, K. Swersky, Y. Gal, G. E. Hinton, Learning sparse networks using
targeted dropout, CoRR abs/1905.13678, 2019.

[6] A. N. Tikhonov, Solution of incorrectly formulated problems and the regularization
method, Soviet Math. Dokl. 4, 1963, pp. 1035–1038.

[7] Y. LeCun, C. Cortes, MNIST handwritten digit database, 1990.

[8] H. Xiao, K. Rasul, R. Vollgraf, Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms, CoRR abs/1708.07747, 2017.

[9] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, Imagenet: A large-scale hierar-
chical image database, in: IEEE conference on computer vision and pattern recognition,
2009, pp. 248–255.

[10] G. A. Miller, Wordnet: A lexical database for english, Commun. ACM 38 (11), 1995, pp.
39–41.

[11] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, L. D. Jackel,
Backpropagation applied to handwritten zip code recognition, Neural Computation 1 (4),
1989, pp. 541–551.

[12] D. Molchanov, A. Ashukha, D. P. Vetrov, Variational dropout sparsifies deep neural
networks, in: Proceedings of the 34th International Conference on Machine Learning,
(ICML), D. Precup, Y. W. Teh (Eds.), Sydney, Australia, Vol. 70, 2017, pp. 2498–2507.

210

ESANN 2022 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 5-7 October 2022, i6doc.com publ., ISBN 978287587084-1.
Available from http://www.i6doc.com/en/.

