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Abstract. In the contemporary era of data-driven decision-making, the
application of Machine Learning (ML) on complex data (e.g., images, text,
sequences, trees, and graphs) has become increasingly pivotal (e.g., Large
Language Models and Graph Neural Networks). In this context, there
is a gap between purely data-driven models and domain-specific knowl-
edge, requirements, and expertise. In particular, this domain specificity
needs to be integrated into the ML models to improve learning generaliza-
tion, sustainability, trustworthiness, reliability, security, and safety. This
additional knowledge can assume different forms, e.g.: software develop-
ers require ML to comply with many technical requirements, companies
require ML to comply with economic and environmental sustainability,
domain experts require ML to be aligned with physical and logical laws,
and society requires ML to be aligned with ethical principles. This spe-
cial session gathers valuable contributions and early findings in the field
of Informed ML for Complex Data. Our main objective is to showcase the
potential and limitations of new ideas, improvements, or the blending of
ML and other research areas in solving real-world problems.

1 Introduction

In the contemporary era of data-driven decision-making, the application of Ma-
chine Learning (ML) has emerged as a cornerstone of innovation across various
domains [1–3]. The versatility of ML models in handling complex data types
such as images, text, sequences, trees, and graphs has opened up new avenues
for solving intricate problems [4]. The development and deployment of Large
Language Models [2, 5] and Graph Neural Networks [6, 7] exemplify the strides
made in leveraging complex data for intelligent decision-making.

However, the journey of ML from theoretical frameworks to practical ap-
plications is fraught with challenges. A significant gap exists between purely
data-driven models and the specific knowledge, requirements, and expertise in-
herent in various domains. Bridging this gap is essential for enhancing the
generalization, sustainability, trustworthiness, reliability, security, and safety of
ML models. Integration of domain-specific knowledge into ML models is not
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merely a technical requirement, but a multidimensional necessity that encom-
passes technical, economic, environmental, and ethical aspects [4, 7–21].

The domain-specific integration of knowledge, requirements, and expertise
into ML models requires one to address several critical needs. Software develop-
ers require ML models that comply with numerous technical specifications and
performance standards [4, 7, 8]. This includes considerations for computational
efficiency, scalability, and interoperability with existing systems. Companies
and industries demand that ML models not only deliver economic value, but
also align with sustainable practices [9–11]. This includes optimizing resource
utilization, minimizing energy consumption, and reducing the carbon footprint
associated with model training and deployment. Domain experts emphasize the
need for ML models to align with established physical and logical principles [12–
14]. For example, in scientific research and engineering, models must respect
conservation laws and other fundamental principles to ensure valid and reliable
outputs. The society in general requires ML models to operate within ethical
limits, ensuring fairness, transparency, and accountability [15–21]. This is cru-
cial to maintaining public trust and addressing concerns related to bias, privacy,
and the societal impact of ML-based technologies.

Recognizing these multifaceted requirements, the special session on Informed
ML for Complex Data aims to gather valuable contributions and early findings
from the field. The primary objective is to showcase the potential and limitations
of novel ideas, improvements, and the integration of AI, ML, and other research
areas to address real-world problems. The session emphasizes the exploration of
innovative approaches that integrate domain-specific knowledge into ML mod-
els. A key focus is on demonstrating the practical implications of informed ML
models in solving real-world problems. While the integration of domain-specific
knowledge presents significant opportunities, it also introduces complexities and
limitations. The session provides a platform for discussing these challenges, in-
cluding the difficulty in accurately encoding domain knowledge, potential biases
introduced by domain-specific assumptions, and the computational overhead as-
sociated with more complex models.

The integration of domain-specific knowledge into ML models represents a
critical evolution in the field of ML. By addressing the gap between data-driven
approaches and domain-specific requirements, researchers and practitioners can
develop more effective, sustainable, and trustworthy ML solutions.

2 Data-informed

With the vast amount of data that is produced daily, the ability to extract
meaningful information from it is becoming increasingly significant. The data
tends to show complex relationships, such as the sequence information in a text
or the relationships among entities in (graph) databases, social and IoT data.
Given the speed with which the data is generated, machine learning models
with the ability to directly learn from complex data are becoming more and more
popular. Two clear examples are Large Language Models, that are able to exploit
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textual data to an extent in which they show primitive reasoning abilities [22, 23],
or Graph Neural Networks, that are capable of learning task-specific concepts
over the extremely versatile graph representation, that can encode as graphs a
widespread array of data, from chemical compounds to social networks [24–26].
One of the main challenges in Graph Neural Networks is their applicability to
huge datasets, both in terms of computational time and memory requirements
[27], also considering continual learning [28]. Graph Neural Networks are the
most popular flavour of a family of models commonly known as geometric deep
learning [29]. Another example of complex data belonging to the same family and
that requires specific deep learning models to deal with are point clouds, that are
increasingly popular since thay are generated, for instance, from LiDaR (Light
Detection and Ranging) sensors that are becoming more and more common in
mobile devices [30].

3 Technically Informed

Integrating ML models into production systems necessitates compliance with a
range of technical specifications and performance standards [4, 7, 8, 31].

Efficient models minimize operational costs and latency, enhancing the user
experience. Techniques such as model pruning, quantization, and specialized
hardware (e.g., GPUs, TPUs) are essential for achieving high computational
efficiency. Balancing model complexity and performance is crucial for resource-
efficient operations.

Scalable ML models handle varying loads, adapting to increasing data vol-
umes and user demands without performance degradation. Distributed training,
model parallelism, and cloud-based services are key techniques. Developers must
design horizontally scalable models, leveraging distributed computing environ-
ments.

Ensuring ML models seamlessly integrate with existing systems and technolo-
gies involves compatibility with various programming languages, frameworks,
and data formats. Standardized protocols, APIs, and containerization (e.g.,
Docker) enhance interoperability, facilitating smoother deployment and integra-
tion.

Modern applications require ML models to process complex data like text,
graphs, and trees. Specialized techniques, such as Large Language Models for
text and Graph Neural Networks are crucial. Developers must ensure models
effectively process these data structures for accurate predictions.

The technical debt in ML systems arises from factors like data dependencies,
configuration issues, and entanglement, which can significantly degrade system
performance over time. The importance of managing these debts through prac-
tices such as modular design, testing, and continuous monitoring is crucial calling
for more attention to the engineering aspects of ML to ensure sustainable and
scalable solutions. It is then required to provide practical recommendations for
developers and researchers to mitigate these hidden risks in their ML projects.

Technically Informed ML emphasizes meeting technical standards and per-
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formance benchmarks, ensuring ML models deliver accurate results and inte-
grate seamlessly into production environments, providing long-term value and
sustainability.

4 Environmentally Informed

As the demand for ML continues to grow across various sectors, there is an in-
creasing emphasis on the environmental impact of these technologies [9–11, 32].
Companies and industries now require ML models not only to deliver economic
value, but also to align with sustainable practices. This shift towards environ-
mentally informed ML encompasses optimizing resource utilization, minimizing
energy consumption, and reducing the carbon footprint associated with model
training and deployment.

Effective resource utilization is a critical aspect of environmentally informed
ML. This involves using computational resources such as CPUs, GPUs, and
memory more efficiently. Techniques like model pruning, which reduces the size
of neural networks, and the use of lightweight architectures can significantly
lower the computational demands. Moreover, scheduling algorithms that op-
timize the use of data center resources can lead to more efficient utilization,
reducing the environmental impact of running large-scale ML operations.

Reservoir computing [33, 34], a paradigm that takes advantage of the dy-
namic properties of recurrent neural networks with fixed random connections,
offers an energy-efficient alternative for specific ML tasks. Using a fixed random
network as the “reservoir”, and only training the output layer, reservoir com-
puting significantly reduces computational load and energy consumption [35].
This approach is particularly advantageous for tasks that involve temporal data
and real-time processing, where rapid responses with minimal computational
overhead are essential.

Energy consumption is a major factor in the environmental footprint of ML
models. Training large models, especially deep neural networks, can be ex-
tremely energy-intensive. Strategies to minimize energy consumption include
adopting more energy-efficient hardware, such as GPUs designed for lower power
usage, and optimizing software to reduce unnecessary computations. Addition-
ally, implementing energy-aware algorithms that dynamically adjust the compu-
tational load based on energy availability and cost can contribute to significant
energy savings.

The carbon footprint of ML models, particularly those that require exten-
sive training on large datasets, can be substantial. An approach to reducing this
footprint is through the use of renewable energy sources to power data centers.
Companies can also offset their carbon emissions by investing in carbon cred-
its or supporting reforestation projects. Furthermore, it is essential to develop
and utilize ML frameworks that prioritize energy efficiency and carbon neutral-
ity. For example, federated learning, which trains models across decentralized
devices, can reduce the need to centralize massive amounts of data, thereby
reducing overall energy consumption and carbon emissions.
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Evaluating the environmental impact of ML models requires a comprehensive
lifecycle assessment, from development and training to deployment and mainte-
nance. This includes evaluating the energy and resource requirements at each
stage and identifying opportunities to reduce the environmental footprint. For
instance, by reusing pre-trained models and employing transfer learning, compa-
nies can significantly cut down on the resources needed for training new models
from scratch.

As awareness of environmental issues grows, so does the regulatory land-
scape. Companies must ensure that their ML practices comply with emerging
regulations aimed at reducing environmental impact. This includes adhering to
standards for energy efficiency, reporting carbon emissions, and implementing
sustainable practices in their ML workflows.

Beyond individual companies, the broader ML community has a role to play
in promoting environmentally informed practices. Open-source initiatives that
develop and share energy-efficient algorithms and frameworks can help dissem-
inate best practices. Collaborative efforts to create benchmarks for energy and
resource efficiency in ML can drive industry-wide improvements.

Looking ahead, neuromorphic computing presents a promising avenue for
achieving substantial energy savings in ML. Inspired by the architecture of the
human brain, neuromorphic systems are designed to process information in a
highly parallel and efficient manner [36–38]. Although still in the experimen-
tal stages, neuromorphic computing has the potential to revolutionize how we
approach ML by drastically reducing power consumption and enhancing com-
putational efficiency. Integrating such advanced technologies will further align
ML practices with environmental sustainability goals.

In conclusion, environmentally informed ML is about integrating sustainabil-
ity into the core of ML practices. By optimizing resource utilization, minimizing
energy consumption, reducing the carbon footprint, and adhering to regulatory
standards, companies can ensure that their ML models contribute positively to
both economic and environmental goals. This holistic approach not only sup-
ports sustainable development, but also positions organizations as responsible
and forward-thinking leaders in their fields.

5 Physically Informed

Physically informed ML integrates domain-specific knowledge into data-driven
models, enhancing their performance and plausibility [12–14, 39]. This inte-
gration can be implemented at various stages of the ML pipeline, primarily
categorized into pre-, in-, and post-processing methods. Pre-processing lays
the foundations by acting on the data, in-processing embeds the knowledge by
modifying the learning mechanisms, and post-processing aligns the outputs with
domain expectations of the ML models. Each method plays a crucial role in en-
suring the ML system is not only fed with high-quality data but also aligns its
learning process and outcomes with domain-specific insights, thereby mitigating
the “garbage in, garbage out” principle.
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Pre-processing involves preparing and transforming the data before it is fed
into an ML model. It addresses the quality of input data, ensuring that the
ML model has the best possible starting point. Techniques such as data clean-
ing, feature engineering, and data augmentation fall under this category, where
domain knowledge enhances the dataset’s relevance and quality. Pre-processing
capitalizes on domain expertise to navigate the ML model through the complex
data landscape, minimizing the distance it needs to cover to generate valuable
insights.

In-processing involves the direct incorporation of domain knowledge into the
ML model’s learning process. It requires deep integration of mathematical rep-
resentations of domain insights, such as laws, trends, or constraints, into the
learning algorithm itself. This could involve altering the model’s functional
form, introducing specific constraints, or embedding regularizers to maintain
desirable properties like convexity and differentiability. The objective is to steer
the model’s learning mechanism in a way that benefits from domain knowledge
and enhances predictive accuracy on a granular level. In-processing signifies a
sophisticated blend of mathematical modeling and domain expertise to tune the
learning process towards domain-aligned insights.

Post-processing refines the ML model’s outputs to ensure they align with do-
main knowledge and expectations. It does not modify the ML model itself but
adjusts its outputs through additional rules or models to enforce domain con-
sistency. Techniques include using ML predictions as inputs to physical models
for more controlled outcomes or applying logical rules to rectify inconsistencies
in predictions. Post-processing leverages the existing ML capabilities and em-
ploys domain knowledge to contextualize and correct the model’s predictions.
This approach aims to mitigate potential errors and align the model’s outputs
with domain-specific truths, requiring substantial domain understanding to im-
plement effectively.

Physically informed ML is a multifaceted field where various approaches en-
hance ML models by integrating domain knowledge at different stages of the
ML pipeline. Through pre-processing, in-processing, and post-processing, do-
main expertise is systematically infused into the model’s data, learning process,
and outputs, respectively, improviing the model’s predictive performances and
its generalization bounds [40]. This integration not only improves model per-
formance and accuracy but also ensures that the outcomes are meaningful and
aligned with domain-specific realities. It highlights the importance of a syner-
gistic collaboration between domain experts and data scientists, underpinning
the successful application of informed ML methods.

6 Ethically Informed

Society at large requires ML models to operate within ethical boundaries, ensur-
ing fairness, transparency, privacy, robustness, security, safety, and accountabil-
ity [15–21]. This is crucial for maintaining public trust and addressing concerns
related to bias, privacy, and the societal impact of ML-based technologies.
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Ensuring fairness in ML involves addressing biases that may arise from train-
ing data or the modeling process. Bias can lead to discriminatory outcomes that
disproportionately affect certain groups. Fair ML practices aim to eliminate
these biases by implementing techniques such as algorithmic fairness, which in-
cludes methods like re-sampling, re-weighting, and adversarial debiasing. Regu-
lar audits and bias detection mechanisms are essential to identify and mitigate
unfairness in ML models.

Transparency in ML models refers to the clarity and openness with which
the workings of the model are communicated. This includes making the data
sources, model architecture, and decision-making processes accessible and un-
derstandable to stakeholders. Techniques such as Explainable ML and model
interpretability methods, including Shapley Additive Explanations and Local In-
terpretable Model-agnostic Explanations, play a crucial role in enhancing trans-
parency. Transparent practices foster trust and allow for better scrutiny and
understanding of ML systems. An interesting research line studies how to gen-
eralize explainability methods or define explainable-by-design models for com-
plex data (see Section 2) [41, 42]. ML models often handle vast amounts of
personal and sensitive data. Ensuring privacy involves safeguarding this data
from unauthorized access and breaches. Techniques such as differential privacy,
federated learning, and data anonymization are employed to protect individual
privacy while still allowing for the effective training of ML models. Strict com-
pliance with data protection regulations, such as the General Data Protection
Regulation is also paramount in maintaining user privacy.

Robustness in ML models refers to their ability to maintain performance and
functionality under various conditions, including adversarial attacks and noisy
data. Developing robust models involves stress-testing them against potential
threats and employing defensive techniques such as adversarial training and
robustness regularization. Robust models ensure reliability and resilience, crucial
for their deployment in real-world applications.

The security of ML models involves protecting them from adversarial attacks,
data poisoning, and other threats that could compromise their integrity and
functionality. Implementing secure coding practices, conducting regular security
audits, and employing techniques such as adversarial detection and response are
essential to safeguard ML systems. Ensuring security helps in maintaining the
trustworthiness of ML models and protecting them from malicious exploitation.

Ensuring the safety of ML models is crucial, particularly when they are
deployed in critical applications such as healthcare, autonomous driving, and
finance. Safety involves a thorough testing and validation of the models to pre-
vent unintended consequences and failures. Implementing fail-safe mechanisms,
conducting rigorous scenario analysis, and adhering to industry safety standards
are key practices to ensure the safe operation of ML systems.

Accountability in ML involves establishing mechanisms to attribute responsi-
bility for the outcomes produced by ML models. This includes setting up gover-
nance frameworks that define the roles and responsibilities of various stakehold-
ers involved in the ML lifecycle. Implementing audit trails, performance mon-
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itoring, and accountability frameworks ensures that ML models operate within
ethical boundaries and that any deviations can be promptly addressed. Ac-
countability mechanisms are vital for fostering public trust and ensuring that
ML systems are aligned with societal values.

In conclusion, ethically informed ML is essential for the responsible develop-
ment and deployment of ML-based technologies. By addressing fairness, trans-
parency, privacy, robustness, security, safety, and accountability, we can build
ML models that not only perform effectively but also uphold ethical standards,
ensuring their positive impact on society.

7 Conclusions

The exploration of ML in the context of complex data has revealed significant
insights and potential advancements in the field. This special session highlights
the critical need to integrate domain-specific knowledge into ML models to im-
prove their generalization, sustainability, trustworthiness, reliability, security,
and safety. By addressing the gap between purely data-driven models and the
specific requirements and expertise of various domains, we can create more ro-
bust and effective ML solutions. Our special session underscores the importance
of incorporating diverse forms of additional knowledge. For software developers,
this means ensuring that ML models meet technical standards. For companies, it
involves aligning ML practices with economic and environmental sustainability
goals. Domain experts seek ML models that adhere to physical and logical laws,
while society demands adherence to ethical principles. The contributions pre-
sented in this session illustrate the promising advances in Informed ML, where
ML and interdisciplinary approaches converge to tackle real-world challenges.
The showcased work demonstrates not only the potential of innovative ideas and
improvements but also the limitations that must be addressed to achieve practi-
cal and impactful solutions. In conclusion, bridging the gap between data-driven
approaches and domain-specific knowledge is essential for the evolution of ML.
This integration will pave the way for more reliable, secure, and ethically sound
applications, ultimately contributing to the progress of society in the contempo-
rary era of data-driven decision-making. The early findings and contributions
discussed here lay a strong foundation for future research and development in
Informed ML for Complex Data.
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