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Abstract. This paper presents an improvement of the Unidimensional
Continuous Dynamic Time Warping (UCDTW) method for diagnosing
Parkinson’s Disease (PD) based on multidimensional time series data.
These data include recordings of vertical Ground Reaction Forces (vGRFs)
collected from eight force sensors per shoe sole during the walk. Lever-
aging gait cycle patterns, the proposed approach distinguishes between
healthy and PD subjects by assessing gait cycle repetition through Multi-
dimensional CDTW. Several classification methods, including supervised
(K-NN, DT, RF, SVM) and unsupervised (GMM, K-means), are used to
classify the healthy and PD subjects, using MCDTW distances extracted
from the gait cycles. The obtained results show a significant improve-
ment in terms of classification performances when using MCDTW-based
features compared to unidimensional ones.

1 Introduction

Parkinson’s disease (PD) is a chronic neurodegenerative disorder affecting the
human central nervous system. The Parkinson’s disease diagnosis is a difficult,
subjective task, mainly in the early stages, and there is no available biomarker
or specific test for such a diagnosis. The PD is responsible of destroying the
dopaminergic neurons which produce neurotransmitters known as dopamine.
These neurotransmitters play an important role in the transmission of brain
signals in order to control human balance and movement [1, 2, 3]. Thus, most
PD patients suffer from movement disorders affecting their walking ability [1,
2]. Tremors, stiff muscles, and changes in walking gait pattern are among the
symptoms that can be observed in patients with PD [2]. A gait cycle consists
of two phases: stance phase and swing phase, representing 60 % and 40 %,
respectively, of the gait pattern. For healthy persons, the gait represents a
cyclical and repetitive activity in which one stride (gait cycle) follows the other
one continuously. However, the PD subjects often present significant variations
in their gait patterns from one cycle to another [5]. In this work, to assess
the repetition of gait cycles, the similarity of time-series data corresponding
to stance phases is characterized. MCDTW, an enhanced version of UCDTW
technique proposed in [7], is proposed to estimate the similarity between time-
series during the stance phases. The MCDTW distances, extracted from gait
cycles, serve as classifier inputs to discriminate between healthy subjects and
those with PD. To evaluate the proposed approach, three online sub-datasets
including gait data collected from 72 healthy subjects and 93 PD subjects were
used. These datasets were provided by Yogev et al. [8] (29 PD subjects and
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18 healthy ones), Hausdorff et al. [9] (29 PD and 25 healthy subjects) and
Frenkel-Toledo et al. [10] (35 PD subjects and 29 healthy ones). The gait data
consist of vertical Ground Reaction Forces (vGRFs) recordings collected from
eight force sensors embedded in each shoe sole worn by the subjects, resulting in
sixteen signals per recording. In this paper, the time-series corresponding to the
sixteen force signals provided by the vGRFs sensors as well as the mean of the
outputs from the 8 sensors of each foot are considered to characterize the gait
pattern of each subject. This paper is structured as follows: Section 2 outlines
the proposed approach. Section 3 presents and discusses the performance of
this approach. Finally, the paper concludes with a summary and outlines some
future perspectives in the last section.

2 Proposed approach

In our previous work [7], unidimensional CDTW based features were used to
assess the gait cycle similarity using unidimensional time-series data. Only the
mean of the eight force sensors placed under each foot are considered. For a more
accurate measure of similarity between stance phases, it’s crucial to consider all
the data characterizing the gait cycle. For this, multidimensional Continuous
Dynamic Time Warping (MCDTW) based features are proposed. The objective
is to enhance discrimination between healthy subjects and those with PD. In
this paper, for each foot, we consider the eight force signals provided by the
vGRF sensors, as well as their mean value, resulting in a total of nine signals
per foot.

First, the standard multidimensional DTW will be reviewed before presenting
MCDTW. Formally, let U = (u1, u2, ..., ul, ..., ud) and V = (v1, v2, ..., vl, ..., vd)
be two multidimensional time-series, where ul = (ul(1), ul(2), ..., ul(i), ..., ul(m))
and vl = (vl(1), vl(2), ..., vl(j), ..., vl(n)) represent the lth unidimensional time-
series. d represents the number of signals per foot, i = 1, 2, ...,m, j = 1, 2, ..., n
where m and n represent respectively the lengths of the time series U and V
that could be represented under the following matrices.

U =



u1(1) u1(2) ... u1(i) ... u1(m)
u2(1) u2(2) ... u2(i) ... u2(m)

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

ul(1) ul(2) ... ul(i) ... ul(m)

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

ud(1) ud(2) ... ud(i) ... ud(m)


V =



v1(1) v1(2) ... v1(j) ... v1(n)
v2(1) v2(2) ... v2(j) ... v2(n)

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

vl(1) vl(2) ... vl(j) ... vl(n)

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.
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
The local distance dlocal(U(i), V (j)) between the elements of the time-series

in the multidimensional domain is computed using the squared Euclidean dis-
tance, expressed as:

dlocal(U(i), V (j)) =
d∑

l=1

(ul(i)− vl(j))
2 (1)
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Where U(i) and V (j) represent the ith and the jth columns of U and V
respectively. Then the optimal alignment path between the two time series U
and V corresponds to the minimum distance warping path that is calculated
based on the dlocal(U(i), V (j)).

In the context of multidimensional data, the cumulative distance can be
formulated as follows:

D(i, j) = dlocal(U(i), V (j)) + min

 D(i− 1, j − 1)
D(i− 1, j)
D(i, j − 1)

(2)

Where D(1, 1) = dlocal(U(1), V (1)) represents the initial condition.
The optimal warping path W = (wu(k), wv(k)) can be calculated using the

recursion equation 2. It corresponds to the minimum sum of distance from (1, 1)
to (m,n), which indicates how the two multidimensional time series U and V
stretch or shrink along the time axis. In the following, two new multivariate
time-series U and V are calculated as follows:{

U(k) = U(wu(k))
V (k) = V (wv(k))

, k = 1, 2, ..., p (3)

Where wu(k) and wv(k) are the indexes in time-series U and V respectively,
and p is the length of the warping path. (wu(k);wv(k)) indicates that the wu(k)
th element in time series U corresponds to the wv(k) th element in time series
V (mapping between wu(k) th and wv(k) th).

Using the warping path W, the original time-series U and V will be mapped
to U and V . Thus, the multidimensional DTW distance measure can be ex-
pressed as follows :

DTW (U, V ) =

p∑
k=1

dlocal(U(wu(k)), V (wv(k))) =

p∑
k=1

dlocal(U(k), V (k))

=

p∑
k=1

(U(k)− V (k))2
(4)

The MCDTW can be formulated by considering the process of mapping used
in multidimensional DTW in the continuous domain. As in the case of UCDTW,
intermediate points are added in the time-series using linear interpolation. The
MCDTW differs from the standard MDTW by the fact that a sample point
in one of the time-series could match a point in-between two samples in the
other time-series. Thus, the warping path W can take non-integer values. For
example, the sample point vl(j) can be mapped to a new point which is obtained
using an orthogonal projection of vl(j) onto the segment [ul(i);ul(i + 1)].

Using the orthogonal projection, denoted as vl(f), of sample point ul(i) of the
time series U onto the segment [vl(j − 1); vl(j)], and conversely the orthogonal
projection , denoted as ul(e) , of sample point vl(j) of the time-series V onto the
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segment [ul(i − 1);ul(i)], the coordinates of the intermediate matching points
vl(f), ul(e) can be expressed as follows:

u


e = (i− 1) + ru.

4i

41

ul(e) = ul(i− 1) + ru.
4u

41

with

4i = (i)− (i− 1) = 1

4u = ul(i)− ul(i− 1)

41 =
√
42

i +42
u

ru =
(j − (i− 1))

41
+

(vl(j)− ul(i− 1)).4u

41

v


f = (j − 1) + rv .

4j

42

vl(f) = vl(j − 1) + rv .
4v

42

with

4j = (j)− (j − 1) = 1

4v = vl(j)− vl(j − 1)

42 =
√
42

j +42
v

rv =
(i− (j − 1))

42
+

(ul(i)− vl(j − 1)).4v

42

3 Results and discussion

Figures 1(a) and 1(c) present the matching process between multidimensional
time-series during the stance phases of the right foot for a healthy an a PD
subject, respectively. In the case of healthy subject, it can be observed that
there is a matching between the consecutive stance phases as shown in figure
1(a). However, in the case of PD subject, the matching between the consecutive
stance phases is less important as shown in figure 1(c). These observations are
better illustrated in figures 1(b) and 1(d), which present the optimal warping
paths for both a healthy and a PD subject, respectively. The warping path
obtained for the PD subject illustrates a dissimilarity between consecutive stance
phases compared to that observed in the case of healthy subject. The black lines
represent the ’optimal’ warping paths in the case of identical stance phases. For
a healthy subject, the ’optimal’ warping path closely aligns with optimal one
(figure 1(b)). Conversely, for a PD subject, the ’optimal’ warping path is highly
distorted and deviates significantly from the optimal one (figure 1(d)).

In this paper, only the stance phases are considered as the vGRFs values
in swing phases (foot up) are equal to zero. In order to estimate the similarity
of gait cycles, the MCDTW technique is applied on successive stance phases
extracted from gait cycles of each foot. Thus, Two MCDTW distance vectors
characterizing this similarity are estimated. Mean and std of the MCDTW
distance vectors are considered leading to four features namely Mean and std
of the MCDTW distance of the left and right foot. These feature are then
used as classifier inputs. In order to maximize the classifier performances in
terms of PD classification, parameters tuning step was carried out. In this
study, finding parameter settings is conducted similarly as in [7], using a grid
search method. The performances of the classifiers are evaluated using a 10-fold
cross-validation technique. Table 1 shows the classifiers performances in terms
of accuracy and its standard deviation obtained using MCDTW and UCDTW
features. A comparison of the classifiers performances in the case of MCDTW,
shows that k-NN and SVM allow achieving high accuracy rates (higher than
98%) with a small std (less than 1.02%). In the case of Yogev et al and Frenkel-
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(a) Healthy matching Stance Phases (b) Healthy Optimal path

(c) PD matching Stance Phases (d) PD Optimal path

Fig. 1: Results obtained with consecutive stance phases of right foot using
MCDTW. R1, . . . , R8 represent the vGRF signals.

Toledo sub-datasts the SVM outperforms the other classifier methods followed
by KNN, RF and DT. For Hausdorff sub dataset, KNN outperforms the other
classifier methods followed by SVM, RF and DT. By comparing supervised and
unsupervised methods, it can be noted that supervised ones outperform largely
the unsupervised methods. It is worth noting that in the case of unsupervised
methods, the GMM methods outperforms the K-means one in the case of the
tree sub-datasets.

Supervised Unsupervised

Dataset. k-NN CART RF SVM k-Means GMM

M
C

D
T

W Yogev et al. 99.76 ± 0.5 % 94.24 ± 2.66 % 98.71 ± 1.18 % 99.88 ± 0.38 % 75.81 ± 7.88 % 77.79 ± 12.92 %

Hausdorff et al. 99.92 ± 0.26 % 93.39 ± 2.08 % 96.03 ± 1.73 % 99.75 ± 0.4 % 69.42 ± 3.41 % 78.93 ± 1.31 %

Frenkel-Toledo et al. 98.59 ± 1.02 % 92.81± 3.44 % 94.84 ± 2.06 % 99.84 ± 0.49% 73.75 ± 3.57 % 76.88 ± 7.72 %

U
C

D
T

W
[7

]

Yogev et al. 92.88 ± 2.03 % 82.96 ± 3.99 % 89.35 ± 2.62 % 93.57 ± 2.61 % 67.79 ± 1.10 % 65.58 ± 7.23 %

Hausdorff et al. 97.52 ± 1.04 % 88.82 ± 3.09 % 90.02 ± 1.98 % 95.03 ± 1.85 % 65.29 ± 2.13 % 73.97± 4.90 %

Frenkel-Toledo et al. 86.02 ± 3.09 % 80.02 ± 6.44 % 82.59 ± 4.92 % 87.32 ± 2.99 % 60.47 ± 1.48 % 67.19 ± 8.65 %

Table 1: Accuracy and its std obtained using proposed MCDTW and UCDTW
based features.

By comparing the results obtained using MCDTW and UCDTW, it can be
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observed that the use of MCDTW gait features allow achieving best perfor-
mances. The accuracy rate improvement obtained in the case of supervised
classifiers varies from 2% to 12%. It can be also noticed a significant reduction
of std measure. Same observation can be made also in the case of unsupervised
methods with an accuracy rate improvement ranging from 4% to 13%.

4 Conclusion

This paper presents an enhancement of the unidimensional CDTW method for
Parkinson’s disease (PD) classification using multidimensional time series data.
This approach exploits the repetitive patterns of human walking to discrimi-
nate between healthy and PD subjects. Healthy subjects present a repetitive
gait cycles, whereas those with PD show dissimilarities from one cycle to an-
other. To assess these dissimilarities, a multidimensional CDTW, an exten-
sion of the unidimensional CDTW, is proposed. The obtained results showed
a significant classification accuracy improvements when using multidimensional
CDTW-based features compared to unidimensional ones. Ongoing research fo-
cuses on exploring alternative models to the linear interpolation used in the
MCDTW formulation to achieve better assessment of time-series similarity and
data modelling.
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