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Abstract. This study explores the effects of different data sizes and data
imbalance on model performance and the stability of SHapley Additive ex-
Planations (SHAP). The study utilizes a Type 2 diabetes (T2D) dataset
to train three machine learning (ML) models: linear discriminant analysis,
XGBoost, and a neural network. It shows that adjusting the background
dataset size leads to variations in the SHAP values, with decreased vari-
ance observed in larger and balanced datasets. Furthermore, the study
highlights that the data characteristics leading to high model performance
may not always produce reliable and stable SHAP explanations.

1 Introduction

Artificial intelligence (AI) models greatly benefit from a large amount of data
during the training process. Despite the abundance of big data in various fields,
many real-world medical datasets suffer greatly from an imbalanced class distri-
bution, particularly when it comes to rare diseases. This significantly impacts
rare event detection, as most classifiers implicitly assume a balanced class distri-
bution and aim to maximize overall accuracy, leading them to favor the majority
class.

In machine learning applications, understanding the reasoning behind model
decisions is important for end-users across various domains, particularly in fields
like medicine. Although achieving the optimal model for medical applications
may not always be feasible, prioritizing transparency ensures that users compre-
hend the model’s functioning and enhances its reliability and trustworthiness.
Post-hoc explanation methods are necessary to interpret certain ML models,
which can be too complex even for experts to interpret. SHapley Additive exPla-
nation [1] is one such post-hoc explanation method that requires a background
dataset when interpreting ML models. The background dataset consists of repre-
sentative data samples used as a reference to compute the expected values of the
model outputs. Therefore, identifying the influence of the background dataset
on the quality and reliability of SHAP explanations is important to ensure the
model’s trustworthiness.

∗This work was funded by HTx project. The HTx project has received funding from the
European Union’s Horizon 2020 research and innovation programme under grant agreement
№ 825162.
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The existing literature extensively examines how the size of the data and the
class imbalance affect model performance [2, 3, 4]. However, none of these stud-
ies considered the effects of data characteristics on the results of the explanation
methods. Recently, Yuan et al. [5] investigated the effect of background data
size on the stability of SHAP in deep learning models. They also investigated the
effects of data imbalance on SHAP explanations for deep learning models [6].
However, both studies were conducted using a single artificial neural network
model, without consideration of model performance. Furthermore, they did not
simultaneously consider data size and class imbalance of the background data
in their analyses. Considering both factors together would provide a more com-
prehensive understanding of their combined influence on SHAP explanations.
Therefore, this article furthers the investigation to explore the impact of data
size and data imbalance on the performance and the SHAP explanation of ma-
chine learning models using Type 2 diabetes (T2D) data. It aims to understand
whether high model performance implies corresponding reliability and stability
in the model explanation.

2 Methodology

This study incorporates and expands on the research findings and methodology
presented by Lavikainen et al. [7]. The study [7] was carried out with the T2D
dataset to identify long-term glycemic control clusters of patients based on their
six-year glycated hemoglobin (HbA1c) trajectories. The binary classification
was then performed to predict the trajectory membership, ‘stable+adequate’
and ‘inadequate’ classes. Furthermore, the study used three types of predictors:
clinical-, treatment-, and socioeconomic-related. In this study, we focus only on
models developed with clinical-related predictors.

The dataset used in this study is the North KareliaWellbeing Services County
electronic health register data, the same dataset used by [7]. In our analysis,
we use three classification models, including the final models selected by [7]
- linear discriminant analysis (LDA) and neural network (NN) - along with
the addition of XGBoost (XGB). All models were trained using the same set
of hyperparameters across all scenarios, with each model using five features,
HbA1c 1 year before (mmol/mol), HbA1c 2 years before (mmol/mol), fasting
plasma glucose (mmol/l), T2D duration (years), and Other cardiac diseases
(other diseases of the heart and pulmonary circulation).

The data preprocessing steps, methods, and parameters are the same as
[7], except that in our study, all the duplicate entries have been removed. After
preprocessing, the dataset contained 7601 samples and we used random sampling
to partition 500 samples from the preprocessed dataset to use as a test dataset.
The performance of various model configurations in this study was evaluated
using this test dataset. The remaining data was used as the training data during
the model training phase and as background data for SHAP value calculations.
Each model was trained with a different percentage of the dataset, ranging from
10% to 100% of the original training data, and we used the same training dataset
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as the background data. Table 1 displays the number of samples for each data
size. All the models were trained with the same five predictors mentioned above
and validated using 10-fold cross-validation. The performance of all models was
evaluated using balanced accuracy (BA), F1 score, and area under the ROC
curve (AUC).

10% 25% 50% 75% 100%
Train Val Train Val Train Val Train Val Train Val

C0 543 109 1363 279 2717 579 4064 869 5401 1162
C1 41 7 98 18 207 42 322 65 447 91

Table 1: Number of training and validation samples in each data size. The test
set consists of a fixed 500 samples across all data sizes.

C0: Adequate Class, C1: Inadequate Class

First, the study was conducted using imbalanced data. Subsequently, the
steps were repeated using balanced data, achieved by applying the Synthetic
Minority Over-sampling Technique (SMOTE) [8] to oversample and balance the
dataset in each scenario. In the next step, we assess SHAP explanations using
the mean absolute SHAP values across splits in 10-fold cross-validation for each
feature, using shap.Explainer, under various background data sizes and class
distributions1.

3 Results and Discussion

Table 2 presents the performance of all models trained with different config-
urations. LDA achieved its highest balanced accuracy of 0.882 using 25% of
balanced training data, indicating a significant increase compared to the models
trained with imbalanced data. Increasing the amount of training data shows a
significant impact on the performance of the NN model. However, there may
be a point of saturation, beyond which additional training data does not sig-
nificantly improve model performance. Moreover, different ML models require
different amounts of training data for optimal performance. In our study, the
impact of data size on model performance is minimal irrespective of the model,
with noticeable effects primarily observed in NN models. In this study, the re-
sults indicate that balancing the class-wise distribution of samples using SMOTE
leads to an improvement in the balanced accuracy evaluation metrics, but it did
not always result in an improvement in the F1 score and AUC.

Figure 1 shows the variations in the mean absolute SHAP values of the fea-
tures across cross-validation splits within the validation set, for both balanced
and imbalanced data. The LDA model exhibits higher mean absolute SHAP val-
ues, while the NN model demonstrates the lowest, indicating less certainty in its
interpretation for this dataset. Furthermore, the results show that models built

1The source code accessible on GitHub: https://github.com/anushaihalapathirana/

data_characteristics_shap
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Model
Training Data size in Percentage (%)

10 25 50 75 100

Imbal. LDA BA 0.772 0.758 0.759 0.732 0.733
data F1 0.734 0.728 0.731 0.715 0.718

AUC 0.914 0.914 0.913 0.913 0.913
XGB BA 0.643 0.682 0.691 0.678 0.647

F1 0.666 0.741 0.730 0.721 0.682
AUC 0.907 0.910 0.899 0.885 0.900

NN BA 0.683 0.690 0.700 0.698 0.713
F1 0.699 0.725 0.720 0.712 0.728
AUC 0.887 0.911 0.911 0.907 0.908

Bal. LDA BA 0.881 0.882 0.860 0.857 0.858
data F1 0.691 0.668 0.695 0.688 0.690

AUC 0.913 0.913 0.915 0.914 0.914
XGB BA 0.783 0.799 0.794 0.791 0.791

F1 0.700 0.714 0.699 0.691 0.691
AUC 0.900 0.892 0.902 0.863 0.888

NN BA 0.736 0.750 0.796 0.811 0.813
F1 0.641 0.672 0.678 0.685 0.645
AUC 0.864 0.855 0.895 0.892 0.886

Table 2: Performance of models on the test dataset.

Imbal.: Imbalanced, Bal.: Balanced, F1: F1 score.

on balanced data tend to have higher mean absolute SHAP values compared
to those with imbalanced data. Additionally, the findings reveal that SHAP
is more reliable in ranking the most important feature; however, the ranking of
other features tends to fluctuate with different data sizes. Moreover, larger back-
ground datasets lead to more stable SHAP values. It is particularly noticeable
in the LDA model, where the SHAP values show less variation with increased
data size. For example, the variances of other cardiac diseases feature in the
LDA model, using balanced data across data sizes ranging from 100% to 10%,
are as follows: 0.0028, 0.0003, 0.0004, 0.0002, and 0.0001. It is important to
note that even with more extensive datasets, the issue of imbalanced data can
result in potential inconsistencies in feature importance rankings.

We used Uniform Manifold Approximation and Projection (UMAP) [9] to
analyze the correlation between the mean absolute SHAP values of features in
cross-validation splits and background data sizes (Figure 2). UMAP demon-
strated more effective clustering of SHAP values across different data sizes when
using balanced background data as opposed to imbalanced data. Furthermore,
even when using balanced background data, linear models tend to result in
denser clusters, while complex models tend to result in sparser clusters. This
highlights the impact of model complexity, as well as the size and balance of
the background data, on SHAP explanations. In all cases, UMAP demonstrated
that the size of the background data significantly influences SHAP values.
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(b) Mean Absolute SHAP Values Calculated with Balanced Background Data

Fig. 1: Comparative Analysis of Mean Absolute SHAP Values for Features
Across 10-Fold Cross-Validation Splits.

4 Conclusion

This study investigated the effect of data size and imbalance on the performance
and SHAP explanation of three different machine learning models. Our study
highlights the significance of explaining both the rationale behind model deci-
sions and the potential consequences of machine learning models to identify how
reliable the models are, enhancing trust and efficacy in decision-making pro-
cesses. The study revealed that the data size leading to high model performance
does not always result in correspondingly reliable and stable SHAP explanations.
It is important to note that, to obtain reliable and stable SHAP explanations,
researchers should refrain from using excessively small background data sizes.

A limitation of our study was that it focused on a single dataset and ex-
amined only the influence of data size and imbalance on the stability of SHAP
values. Other factors, like domain-specific context and feature interactions, also
contribute to understanding the model. We plan to extend our work by inves-
tigating various datasets alongside diverse data balancing techniques and data
augmentation methods, as well as evaluating different validation metrics and
conducting computational cost analysis, to enhance the study analysis.
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(b) Mean Absolute SHAP Values Calculated with Balanced Back-
ground Data

Fig. 2: UMAP Visualization of Mean Absolute SHAP Values for Features Across
10-Fold Cross-Validation Splits.

References

[1] S. Lundberg and S-I. Lee, A Unified Approach to Interpreting Model Predictions,
arXiv:1705.07874, arXiv preprint, 2017.

[2] C. A. Ramezan and T. A. Warner and A. E. Maxwell and B. S. Price, Effects of Train-
ing Set Size on Supervised Machine-Learning Land-Cover Classification of Large-Area
High-Resolution Remotely Sensed Data, Remote Sensing, 13:368, Multidisciplinary Digi-
tal Publishing Institute, 2021.

[3] P. T. Noi and M. Kappas, Comparison of Random Forest, k-Nearest Neighbor, and Sup-
port Vector Machine Classifiers for Land Cover Classification Using Sentinel-2 Imagery,
Sensors, 18:18, Multidisciplinary Digital Publishing Institute, 2018.
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