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1- LIACC / Faculdade de Engenharia da Universidade do Porto, Portugal
2- Instituto de Astrof́ısica e Ciências do Espaço, CAUP, Porto, Portugal

3- Institut de Recherche and Astrophysique et Planétologie,
OMP/CNRS, CNES, University of Toulouse, Toulouse, France

4- Departamento de F́ısica e Astronomia, FCUP, Porto, Portugal

Abstract. Space weather refers to the dynamic conditions in the solar
system, particularly the interactions between the solar wind — a stream
of charged particles emitted by the Sun — and the Earth’s magnetic field
and atmosphere. Accurate space weather forecasting is crucial for miti-
gating potential impacts on satellite operations, communication systems,
power grids, and astronaut safety. However, existing solar wind coronal
models like MULTI-VP require substantial computational resources. This
paper proposes a Physics-Informed Neural Network (PiNN) as a faster
yet accurate alternative that respects physical laws. PiNNs blend physics
and data-driven techniques for rapid and reliable forecasts. Our studies
show that PiNNs can reduce computation times and deliver forecasts com-
parable to MULTI-VP, offering an expedited and dependable solar wind
forecasting approach.

1 Introduction

Space weather forecasting aims to predict the effects of solar disturbances on
Earth, using models that establish causal relationships across physical regimes.
The solar wind, a flow of charged particles from the Sun’s corona, is a primary
factor in these disturbances across the solar system. However, accurately pre-
dicting the solar wind’s behavior through space is challenging due to the absence
of direct observations of the numerous physical processes it undergoes as it trav-
els through the upper corona and heliosphere. Solar wind modeling employs
specialized models focusing on specific sub-regions or processes to effectively
emulate the solar wind profiles’ behavior from the Sun to the Earth.

Modeling the coronal portion of the solar wind is challenging due to its
complexity. Recent advancements, such as the MULTI-VP model [1, 2], offer
promising solutions. MULTI-VP is a computational tool designed to model in-
dividual solar wind streams within the solar corona, covering up to 15% of the
distance from the Sun to Earth. Leveraging magnetogram-based data but also
pre-computed initial conditions of the dynamic system, this model calculates the
behavior of the solar wind stream properties along open magnetic field lines from
the Sun’s surface up until around 30 solar radii, integrating a one-fluid MHD
approach and accounting for critical physical processes such as coronal heating,
heat conduction, and radiative cooling. To fully model the behavior of solar
wind, MULTI-VP interfaces with other heliospheric models like Helio1D [3] and
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EUHFORIA [4]. These models use MULTI-VP results at around 0.1 Astronom-
ical Units (AU) and extend them to L1 and beyond 1.

Despite its accuracy, MULTI-VP still produces noisy outputs for some so-
lar wind profiles. Moreover, it is computationally intensive, typically requiring
several hours to process inputs and generate forecasts. To mitigate the latter
challenge, our recent studies have shown that Neural Networks (NNs) can gener-
ate more precise initial conditions, reducing computational time by up to 8% [6].
However, the ongoing need for efficient computation highlights the relevance of
exploring data-driven approaches that can offer faster inference times, partic-
ularly in scenarios where achieving high accuracy is not the primary concern,
such as forecasting, leading us to consider the feasibility of a surrogate model.

However, relying solely on a data-driven surrogate model may lead to physi-
cally inconsistent results, complicating its integration with downstream models.
Physics-Informed Neural Networks (PiNNs) [7] address this issue by combining
data-driven techniques with physical laws. This approach ensures both com-
putational efficiency and physical accuracy, shown in previous research where
PiNNs effectively adhere to conservation laws and physical constraints [8, 9].

In this paper, we employed PiNNs to develop surrogate models for MULTI-
VP. These models effectively reduced computational cost and numerical noise
compared to the simulator while still maintaining prediction robustness. As such,
we ensured that the surrogates captured the complex dynamics of the data and
adhered to essential physical principles. Consequently, our approach yields more
physically consistent simulations across various heliospheric test scenarios.

2 Methodology

2.1 Data Preparation

The MULTI-VP model uses magnetogram-based data to map the Sun’s surface
magnetic field and infer a three-dimensional topology of the solar corona’s mag-
netic field [1]. It identifies and traces an ensemble of open magnetic field lines,
each representing an elemental solar wind stream. The geometry of each field
line is defined by several physical properties, including the distance from the Sun
(R), the position within the flux tube (L), magnetic field amplitude (B), the in-
clination of the flux tube relative to the Sun (α), and the tube expansion ratio
(Aexp). These geometrical characteristics significantly influence the simulated
outputs, which include the plasma density (n), velocity (v), and temperature
(T ) of the solar wind stream, extending up to 30 solar radii.

In previous work, we trained a neural network to predict the solar wind’s
physical properties at 1 AU [6]. For each stream, both the geometric properties
(R, B, α) and the MULTI-VP’s simulated outputs (n, v, T ) were defined over
640 data points spanning from the Sun’s corona to 30 solar radii. In this work,
all models were trained and validated using the same dataset comprising solar

1The Sun-Earth L1 Lagrange Point, situated about 1.5 million kilometers from Earth,
represents one of the many equilibrium points for small mass objects under the gravitational
influence of the Sun and the Earth [5].
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wind streams from five distinct solar events, but using solely the latter 540 grid
points, removing the initial turbulent part of the data domain. We refined our
previous approach by incorporating input information for L and Aexp. These
properties play a key role in defining the physical properties used in the PiNN.

We have also implemented a comprehensive normalization process to en-
hance the model’s performance further. All data was converted to the Centime-
tre–gram–second (CGS) system of units to ensure consistency with the physical
properties that need to be verified. Afterward, we analyzed the quantiles, density
distribution, and other relevant statistical measures of our data to choose the
most appropriate normalization techniques for each variable. Given the skew-
ness of our data, we applied a logarithmic transformation to all variables but α
and T , which did not have that behavior and were, thus, standardly normalized.
Additionally, we applied an absolute value transformation to both B and α. For
the magnetic field B, the direction was irrelevant in this context, so we focused
only on the positive values. For α, any negative values indicated errors in the
data that were corrected to maintain consistency with expected positive values.

We also noticed unphysical sinusoidal patterns in the MULTI-VP outputs,
likely associated with numerical errors. As such, we smoothed out the outputs
n, v, and T with a Butter Low-Pass Filter, which effectively removes the high-
frequency components of the outputs associated with the unphysical patterns.

2.2 Model Definition

We used a wide network architecture2, capable of handling 640 data points across
five variables. It consists of an initial hidden layer with 2056 neurons, followed
by two layers of 1024 neurons each, and another hidden layer of 2056 neurons.
The final output comprises 640 data points for the three output variables. Batch
normalization is employed to manage gradient flow, and ReLU activation func-
tions are used. Weights were initialized using a Xavier uniform distribution [10],
as commonly done in the literature, to achieve greater stability in training.

The model uses the AdamW [11] optimizer with an initial learning rate of
10−2. During training, the learning rate was reduced via a learning rate sched-
uler on plateau, and weight decay was applied with a very small value of 10−8,
considering the high complexity of the system we are modeling. For the super-
vised loss Ls, we used a Smoothed L1-Loss with a quadratic term under a 0.5
threshold, making the resulting model less sensitive to outliers.

2.3 Physical Properties as Physics-Informed Losses

Due to the inherent complexity and nonlinearity of solar and space weather
phenomena, deriving closed-form solutions that accurately represent the entire
system’s behavior is challenging. Therefore, numerical methods and machine
learning models are often used for predictions and simulations. The MULTI-VP
model involves numerous complex calculations and simplifications to produce
valid results. While data-driven machine learning models are faster, they do

2Implemented using Pytorch: https://github.com/biromiro/pinn-multivp
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not consider physical laws. PiNNs bridge the gap between these approaches by
incorporating physical constraints. In this work, we used two expressions to
help our model achieve more physically sound results. The first relates to the
principle of mass conservation within the flux tube, meaning mass should remain
constant. Mass can be inferred using the equation n·v

B , so its standard deviation
(σ) should be 0. Therefore, we define the physical property mc as follows:

mc = σ
(n · v

B

)
≈ 0 (1)

The second property mirrors the momentum conservation characteristics of
a simplified MHD system of differential equations, where G represents the grav-
itational constant and ν stands for a predefined viscosity constant. As such, the
physical property pc is defined as follows:

pc = Pgrad + gterm + vgrad + νdamp ≈ 0 (2)

Pgrad =
∂(n · T )
∂L

· n (3)

gterm = G
cos(α)

R2
(4)

vgrad =
∂v2

∂L
− v

∂v

∂L
(5)

νdamp = −ν

(
∂2v

∂L2
+Aexp

∂v

∂L

)
(6)

These properties can be seamlessly integrated as new optimization objectives
during neural network training by evaluating them as loss functions. While im-
plementing the mass conservation property that way is straightforward, incor-
porating momentum conservation proves more complex. The necessity for first
and second-order derivatives poses a challenge that cannot be addressed using
autodiff, as commonly done in PiNN implementations. This limitation arises
due to the 1D-grid data format, which differs from the point-wise data typi-
cally required. Although converting to a point-wise data format is feasible, it
was not pursued because it could significantly disrupt spatial correlations among
proximal inputs and possibly degrade the performance or complicate the train-
ing. Consequently, our approach employs Finite Difference methods by following
Eckner’s algorithm and adapting it to utilize tensor operations [12].

It is important to note that these physical properties, especially momentum
conservation, do not show high accuracy in the initial turbulent section of the
domain due to simplifications of the modeling equations. Additionally, the effec-
tiveness of the surrogate model heavily relies on its accuracy, particularly in the
more stable latter part of the domain. Thus, we only impose physical constraints
from index k onwards in the domain, relying on empirical solutions for earlier
sections. The index where the solutions demonstrated the highest physical com-
pliance in the training data was identified as k = 248. With these considerations
in mind, and considering Ri as either the mass conservation residual (mc) for
Equation 1 or as the momentum conservation residual (pc) for Equation 2 at grid
point i, the loss functions are defined following Equation 2.3, with the Lphys term
varying according to what conservation properties were being used (or two terms
in the general loss L for the PiNN tackling both conservations).
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L = λsLs + λphysLphys (7) Lphys =

√√√√ 1

540− k

540∑
i=k

Ri (8)

We noticed that even when using curriculum training — by slowly increasing
the λphys value — to ease the impact of the physical properties on the optimiza-
tion process, the momentum conservation equations would completely take over
the loss landscape as soon as they began to be optimized. This led to unwanted
and oversimplified solutions, given our lack of defined initial and boundary con-
ditions; we needed to make sure that the supervised loss Ls was enforced when
the physical loss Lphys took over. As such, we used λs = 10log(Lphys)−log(Ls).

3 Results

We developed three distinct PiNNs, along with a new solely data-driven neural
network baseline, to examine the impact of each physical rule on the resulting
surrogate: one for each physical rule (see equations 1 and 2), and another com-
bining both. To assess and compare our models, we used four metrics: the mean
coefficient of variation (MCV), indicating variability relative to the mean solu-
tion; the mean squared error (MSE) compared to MULTI-VP’s test set; and the
mass (Lmass) and momentum (Lmom) conservation losses, as previously defined.

MCV MSE Lmass Lmom

MULTI-VP Prediction 0.392 – 1.47× 106 2.84× 104

Classical NN Baseline 0.336 3.60× 10−2 2.08× 106 2.11× 104

Mass conservation PiNN 0.311 3.73× 10−2 1.00× 106 1.89× 104

Mom. conservation PiNN 0.305 5.85× 10−2 7.22× 106 1.71× 102

Mass+Mom. cons. PiNN 0.319 3.77× 10−2 9.83× 105 9.45× 103

Table 1: Metrics for each of the evaluated models.

Analyzing the results in Table 1 shows that the models in this paper closely
replicate MULTI-VP’s outputs under different physical constraints, making them
reliable for use in downstream pipelines. They also show less variability by
effectively excluding significant outliers. Additionally, these models can act as
surrogates, reducing MULTI-VP’s computation times from hours to seconds.

Increased regularization has improved the model’s physical properties while
closely resembling MULTI-VP’s outputs. This suggests that it is possible to
significantly reduce physical loss while maintaining a similar MSE to the baseline,
highlighting the delicate balance between physical and unphysical results.

These findings also underscore the importance of accurately representing all
physical constraints. Focusing solely on momentum conservation led to signif-
icant issues with mass conservation, demonstrating that ignoring any physical
constraints or boundary conditions can easily result in unphysical outcomes.
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4 Conclusions

This study explored the feasibility of using physics-informed models as surro-
gates for the computationally intensive solar wind simulator, MULTI-VP. We
demonstrated that these surrogate models are highly effective, providing an al-
ternative to MULTI-VP by significantly reducing the computational time re-
quired for solar wind predictions. This reduction in time could broaden the
application possibilities. We also found that the physics-informed variants of
our data-driven models not only closely mimic MULTI-VP’s outputs but also
adhere more strictly to the laws of conservation, which are crucial for accurate
solar wind prediction. Future work involves further validating these findings by
testing the surrogate models with heliospheric models like Helio1D to see if their
performance aligns with or surpasses that of MULTI-VP’s solutions.
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