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Abstract. Structure learning is the problem of recovering from data a
Directed Acyclic Graph (DAG) of the interactions among variables. By
enforcing a differentiable acyclicity constraint on the adjacency matrix of
the graph, existing methods solve this problem as an optimization problem
and have been recently extended to time-series data. Due to the cubic
computational complexity of existing acyclicity constraints, their applica-
tion is limited to a few variables. In this paper, we introduce SVARCOSMO,
an optimization-based structure learning method for time-series data that
builds upon recent developments on unconstrained but provably acyclic
models. We empirically show on both simulated and real data that SVAR-
COSMO correctly recovers the underlying DAG in significantly less time,
enabling optimization-based structure learning on high-dimensional data.

1 Introduction

As directed graphical models gain popularity to represent structured information
about the world [1], fitting their structure from high-dimensional data constitutes
a pressing and challenging problem. Despite the existence of numerous algorithms
and methodologies for the optimization of Directed Acyclic Graphs (DAGs) [2],
these solutions often incur in high computational costs that limit large-scale
practical applications. Overall, these issues are exacerbated in time-series, which
motivate the need for computationally efficient solutions, as we address in this
paper. In principle, when time-dependent information is available, we could
exploit it to orient the arrows of DAGs and significantly reduce the space of feasible
solutions. However, when the sampling process is slower than the underlying
timescale, it still requires the incorporation of instantaneous relationships, whose
interactions need to be estimated. This issue is very common in real data
scenarios. For instance, in social and behavioral sciences applications, we often
have quarterly or even yearly observations, while the underlying process occurs
at a much faster pace [3]. A popular model for both instantaneous and time-
lagged effects is the Structural Vector Autoregressive (SVAR) framework [4].
While usually employed in the context of time-series forecasting, we can exploit
SVAR parameters to determine interactions between variables. In particular, by
restricting the instantaneous relations to be acyclic, we can interpret a SVAR as
a Dynamic Bayesian Network (DBN) [1] that assumes linearity of both lagged
and instantaneous interactions. Formally, for each timestamp ¢ we define an
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observation X; € R™"*? of n samples over d variables as

P
X, =WX; + > AX, ,+ U, (1)

p=1

where W € R%X4 represents the acyclic instantaneous effects, A, € R4*%4 rep-
resents lagged-effects at each time step p € {1,... P}, and U; € R¥? is an
exogenous noise term, which we assume to be i.i.d. across variables and time
steps. To ease the presentation, we further simplify the notation as

X = WX + AY + U, 2)

where we aggregate lagged terms as Y = [X;_1|---|X;_,] and A = [A]]--- |A§].

Given a SVAR, we can estimate its parameters, and consequently its structure,
by solving a continuous optimization problem. However, the problem of enforcing
the acyclicity of the coefficient matrix W during the optimization is non-trivial.
One of the most popular solutions to this problem is the NOTEARS algorithm [5],
which has been extended to handle time-series data by DYNOTEARS [6], obtaining
the following SVAR optimization problem:

. } Wowy _ g _
Lin [X —XW — YA[ s.t. Tr(e )—d=0, (3)

where the constraint is provably satisfied if and only if the matrix W is acyclic.
The constrained problem is solved using the Augmented Lagrangian method [7],
which requires evaluating the constraint at each optimization step. Due to the
cubic computational complexity on the number of nodes of the matrix-exponential
operation, the use of this constraint hinders large-scale applications.

In this work, we introduce SVARCOSMO, a model to efficiently perform structure
learning in high-dimensional datasets and that can deal with time-dependent
structures even when the observations are collected at a slower pace than the
underline process, thus presenting instantaneous effects.

2 Fast Large-Scale SVAR Learning

In this paper, we propose to solve the same optimization problem tackled by
DYNOTEARS (Equation 3) by enforcing the acyclicity of the SVAR without the use
of computational expensive constraints. To this end, we build upon cosmo [§], a
recently introduced unconstrained parameterization for acyclic structure learning.
In this way, we define the instant relation matrix W as the element-wise product

W=H © St,e(p)7 (4)

where H € R4 is a matrix, p € R? is a priority vector, and S (p) is a smooth
orientation matrix defined as [S; (p)],,, = o((pu — po — €)/t) for any variable
Xy, Xy, where €,t € R are two hyperparameters. It is immediate that the number
of operations required to construct the matrix W from the priority vector p is
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quadratic in the number of nodes. Given this parametrization, we can rewrite
the SVAR problem as an unconstrained Mean Squared Error (MSE) optimization
problem, which we name SVARCOSMO,

arg min X — ((HQSt,E(p))TX+YA)||F
HeR¥* 4, peR?, AeRI*(4T)

5
0 [H + Al H 5)
+ >‘pHp||2 + )\A||AH1~

Model Optimization. In the limit of the temperature to zero, cosMoO, and
consequently our SVARCOSMO formulation, ensures that the instantaneous effect
matrix W is acyclic. However, since the gradient loss vanishes as t — 0, we
adopt an annealing procedure from a initial positive value to a significantly lower
value tenqg =~ le-2. The L1 regularization on H and A, parameterized by \;
and A4 respectively, serves the purpose of contrasting the discovery of spurious
relations. Following [8], the L2-norm on the priority vector p is introduced to
prevent zero-gradient regions when the priority differences tend to infinity. In
practice, we tackle the optimization problem using the Adam optimizer [9].

Convergence of the Lagged Weights. Inspired by [6], we develop an optimization
procedure that estimates both the instantaneous and the lagged effects in one
stage. While a two stages approach is more popular in the SVAR literature [4],
breaking the estimation into two stages introduces the risk of propagating the
biases of the estimation across stages. In practice, retrieving the instantaneous
effects W typically exhibits slower convergence compared to the estimation of
the lagged effects A. Therefore, we freeze the values of A, when they reach an
optimal state, i.e., the norm of the residuals of the VAR || X — YA|/r remains
constant for n iterations (fixed to n = 300 after preliminary studies).

Summary Graph Construction. Ina SVAR, a summary graph G with variables X
and edges E is a representation of how variables interact in both the instantaneous
and lagged steps. To reconstruct it from our optimization problem, we test the
absolute value of the entries in W and A against a threshold 7 = 0.01, which we
also identified from preliminary studies. Formally, we obtain a summary matrix
by summing entry wise absolute values from W and A, for each p, as in

P
Xi— X, e E < |wij|+Z|a§f)|ZT- (6)
p=1
3 Experiments
In this section, we validate the ability of SVARCOSMO to retrieve the graphical

structure from simulated and real data. In practice, given a dataset X € R**4P
of n observations on d variables over P timesteps, we wish to reconstruct the
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Fig. 1: ROC-AUC comparison for the instantaneous (a) and lagged (b) effects in
the retrieved structure. SVARCOSMO and DYNOTEARS perform comparably on the
graph reconstruction task, with, respectively, DYNOTEARS having slightly better
performance on the instantaneous effects and SVARCOSMO on the lagged effects.
In line with our theoretical analysis, SVARCOSMO is considerably more efficient
in high-dimensional settings as the time comparison shows (c). The results are
averaged over 10 independent runs on graphs of increasing size.

summary graph G of the underlying model. Notably, since we do not assume any
prior information on the underlying data-generating structure, the problem is
essentially unsupervised. However, we empirically found that in our experimental
setting the minimization of the MSE is consistent with the structure learning
problem. This is coherent with previous research on causal discovery [10], which
however requires further theoretical assumptions that we do not explore in this
work. Finally, we follow the tuning technique of [6], by selecting hyperparameters
using a 10-fold cross validation on the MSE of the model.

Summary Graph Bootstrapping. Overall, SVARCOSMO avoids the use of an
acyclicity constraint at the cost of relying on more hyperparameters, whose
tuning is fundamental to correctly reconstruct the underlying graph. Being more
sensitive, we found beneficial to bootstrap the results to avoid the recovery of
spurious edges. In practice, we sample b distinct sub-datasets and fit SVARCOSMO
on each iteration ¢ € {1,...,b} to reconstruct the summary graph as reported
in Section 2. We then compose the overall summary graph by selecting only
edges that appear in more than half of the bootstrap runs. Notably, while this
procedure does not ensure acyclicity of the overall graph, in practice bootstrapping
consistently recovers acyclic graphs without the need of any post-processing steps.
By considering bootstrapping, the overall complexity of sVARCOsMO is O(b - d?),
which is still quadratic in the number of variables d. In all further experiments,
we fix the number of bootstrap samples to b = 10.

Simulated Data. To ensure a fair comparison with DYNOTEARS, we replicate
the simulated data generation process of [6], for which we refer the reader for a
more detailed description. In summary, we sample random DAGs of increasing
size and different edge ratios from which we then sample n = 1000 observations
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Fig. 2: Graph estimated by SVARCOSMO on the S&P100 (a.) and S&P500 (b.)
data. As expected from domain knowledge [11], the underlining graph tend to
organize in a block-diagonal structure following distinct economical sectors.

with exogenous Gaussian noise. We then compute the area under the ROC curve
(ROC-AUQC) of the retrieved weights against the ground-truth summary graph.
In general, we see that the SVARCOSMO outperforms DYNOTEARS in retrieving
the lagged effects A, while DYNOTEARS demonstrates greater predictive power in
capturing instantaneous effects on the graph of W (Figure 1). Crucially, while
the time cost is comparable in low-dimensional settings, with DYNOTEARS even
proving slightly more efficient for d = 10,20 — albeit comparable and likely due
to bootstrapping — the experiments for d = 50,100 reveal that DYNOTEARS
becomes almost impractical for high-dimensional problems, with the training of
certain configurations exceeding 10 hours. The time performance comparison
clearly depicts the substantial difference in computational cost between the two
algorithms and the advantage of SVARCOSMO in high-dimensional settings.

Large-Scale Stock Prediction. As highlighted in the previous sections, the pri-
mary advantage of SVARCOSMO lies in its efficient retrieval of Directed Acyclic
Graphs. Such efficiency is crucial in big-data applications, where the large number
of variables render less efficient algorithms, such as DYNOTEARS, impractical.
To illustrate this advantage, we apply SVARCOSMO to financial data from the
Standard and Poor’s (S&P) stock exchange market, by enriching the experiment
in [6] (Figure 2). By avoiding the use of an expensive acyclicity constraint, we
obtain comparable results in significantly less time, opening the door to the
method’s utilization in much larger datasets, as is often the case in financial
applications. Importantly, SVARCOSMO correctly identifies interactions among
S&P500 industries, which would have been impractical for DYNOTEARS in terms
of computational time, as our study on simulated data highlighted. As we can see,
ordering the titles by industrial sector, the resulting graph has an approximately
block-diagonal structure, which is evidence for stronger relationships within the
same sector. Given the absence of evident causal relationships among S&P100
and S&P500 stocks, the experiment is entirely unsupervised. However, the results
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are coherent with existing economic literature on the comovement of stock prices
by industrial sector, i.e., stocks within the same sector tend to move together [11].

4 Conclusion

We introduced SVARCOSMO, a procedure to recover the underlying structure
of the interactions among DBNs, which we model as acyclic Structural Vector
Autoregressive Models (SVARs). SVARCOSMO avoids the use of computationally
expensive acyclicity constraints by casting the problem in a continuous and differ-
entiable space of DBNs. As we showed on simulated and real data, SVARCOSMO
performs structure learning in significantly less time and with analogous recon-
struction results when compared to constrained methods. As in the literature,
we focused on the recovery from linear models and did not explore the — albeit
valuable — connection between structure learning and causal discovery, which
instead requires further assumptions, leaving it to future works.
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