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Abstract. Biosensors measure signals from the human body, and usually
process them with a small ML model on simple hardware. When a new
person starts using such a device, a domain adaptation problem arises. We
consider the case where no labels are known for the new person, but data
(including labels) from several other people are available (unsupervised,
multi-source). As an application scenario, we look at a shoe insole with 3-8
pressure sensors that estimates how much weight/force is put on the foot
(regression problem). We propose a distance measure between a source
and target domain, and a combination of all source models. Experiments
on real world data from 13 persons show that our method outperforms all
other tested methods by a good margin.

1 Introduction

Wearable sensors that aid in diagnosis and post-surgery care are becoming more
common [3]. In this paper, we focus on a shoe insole equipped with several pres-
sure sensors that can compute the weight put on the foot/leg (e.g. while walking)
and warn if it is overstrained, an important application after femur fractur [IJ.
This is one example of soft-sensors, i.e., hardware components together with
subsequent intelligent and adaptive post-processing [4].

A relevant problem in this context is how to adapt the prediction when a
new user starts using the device. This should be possible adjusting the software
component only but not the hardware, i.e., it can be modeled as domain adap-
tation (DA) problem [2]. The following characteristics hold: sensor inputs and
target values are available for multiple people from historic data. For the target
person, only sensor inputs but no real-valued target values are available, i.e.,
zero-shot learning strategies for regression become necessary [9]. All methods
need to be implementable on the edge, working with low computational power.

One challenge which occurs in this context is the high degree of individuality
of persons: this concerns different weights and different geometry of feet between
persons, and different walking style and duration of the stance phase even for
single persons. This makes robust domain adaptation methods necessary.
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and the project SAIL, grant ID NW21-059A, sail.nrw.
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In this work, we present a domain adaptation method that enables the trans-
fer of models to other persons without any given label information, and that
compares favorably on a realistic benchmark data set.

2 Related Work

Many domain adaptation methods have been proposed, differing in whether
they need labeled target data, and in their assumed difference between source
and target domains. For classification tasks, domain adaptation often relies on
clustering of the data distribution or class-wise transfers. Such principles are not
applicable for regression tasks, and domain adaptation for regression problems is
less common than for classification problems. Here we survey relevant methods:

Subspace Alignment (SA, [6]) first computes a Principal Component Analy-
sis on the source and the target domain; these are matched via a linear trans-
formation, and a classifier or regressor, trained on the labeled source data, is
transformed to the target subspace.

Correlation Alignment (CORAL, [10]) determines the covariance matrices of
source and target data, and then computes a linear transform from the source
covariance to the target covariance. The classifier /regressor is again trained on
the source data, transformed to the target domain.

Transfer Component Analysis (TCA, [8]) computes a kernel matrix of all
possible sample pairs (source-source, target-target, and source-target), and then
computes a linear mapping to a lower dimensional space via an Eigen decompo-
sition. For training a model, the labeled source data is transformed to this space.
Evaluating the model involves computing the kernel on each pair of testing data
and source plus target data.

In Domain-Adversarial Neural Networks (DANN, [7]) the idea is to have
a feature extractor, trained so that it is impossible to determine whether its
output came from the source or the target domain. A domain classifier is in-
troduced, trying to distinguish between the domains in the feature extractor
output, and both are trained in an adversarial fashion. Additionally, a label
predictor takes the feature extractor output and is trained on the labeled source
data. Extensions to multi-source problems and regression problems exist, such
as multisource domain adversarial networks (MDAN, [I3]). DANN and MDAN
have the disadvantage that training the feature extractor, domain classifier, and
label predictor is computationally rather expensive.

Some multi-source DA methods combine models from the source domains.
BayesMSDA [I1] follows the Bayesian principle of determining the posterior via
the prior and the likelihood: the prior is computed for each source domain, based
on whether the classifier from that domain gives a similar output for two similar
target samples (sample similarity is defined by L! distance). The likelihood for a
target sample is the mean distance of the sample to its K nearest neighbors from
the source domain S,,. Finally, the source classifiers are weighted proportionally
to the product of prior and likelihood. Since the likelihood is defined per sample,
this has to be calculated for every sample (including the nearest neighbor search
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on each source domain), which makes an evaluation rather costly.
In the following, we will compare our model to the DA frameworks which
lend itself to edge computing, i.e., SA, CORAL, and TCA; further BayesMSDA.

3 Zero-shot domain adaptation based on data similarities

We model zero-shot learning of the soft-sensor for one person from other persons
as a DA problem, where different persons correspond to different domains. The
DA method we propose can be divided into two parts: computing the similarity
of domains via a distance function, and a weighted average of all source domains
where weights are controlled by the similarity.

Generally, data consist of time series of sensor values X, of ny sensors and
ns steps/stance phases, taken from a person’s walk over a pressure mat. In addi-
tion, label information ys corresponding to the weight put on a foot is available
for source domains. First we describe how to estimate the similarity between
a source domain s; and the target domain ¢. The reasoning for the subsequent
similarity measure is the following: the samples where each sensor has the max-
imum value are easy to determine, and still carry a lot of information. The
assumption is that, for two similar domains, the desired prediction at a sensor
maximum is similar, and the same model can make that prediction.

We assume as given: source data Xg,, corresponding source labels vy, , target
data Xy, body weight of source and target person bws,,bw;, and a prediction
model predicts, (), trained on source data and labels. For each sensor and step,
we determine which sample has the highest value at this sensor, and store it.
Notice that the data can be treated as a stream, without storing all samples,
by replacing samples if one with a higher value at the specific sensor was found,
and by recognizing that a step has ended if all sensors measure (close to) zero
pressure. This leaves us with ny - ns samples. Next we apply the source model
on all samples, divide by body weight, and compute the mean over all ng steps,
for each sensor j individually

. 1 & .
Gt = - ;predzctsi (@t,5,k)

(same for @5, ;). Then we compare the predicted values of the source and the
target domain, per sensor: if one is more than double of the other, we dismiss the
pair, assuming that it is unfit for comparison. We compute the mean squared
difference for all remaining pairs leading to the difference of two domains,

d(si, t) = mean({(Js, ; — 91.)°10.50s, 5 < Pej < 20s,5,5 = 1,...,ns}).

After computing the domain differences between the target domain and all
source domains, we transform these distances into weights for a weighted average.
A small distance should translate to a large weight and vice-versa, so we use the
exponential function on the negative distance:

ws, = exp(—d(s;,t)/median(d(sy,t),d(s2,t),...))
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We normalize the weights to sum to 1. The prediction for a target sample z is

predicty(x) = Z wg, predicts, (x).
s

We refer to this domain adaptation based on similarities as OURS.

4 Experiments

For our experiments, we use the dataset from [12]: this consists of data from 13

persons walking over a high resolution pressure sensor array, 10 steps (ns; = 10)

from each foot. The median number of samples per foot is 453.5. The sensor

placement/selection is computed with the best performing method from [12].
We compare the following methods:

SA, CORAL, TCA: for TCA we use a linear kernel; RBF and polynomial
kernels lead to a negative R? score and were thus not further considered

BayesMISDA: using linear regression for each source domain

OSNA: one source no adaptation — a regression model trained on one random
source domain, without adaptation to the target domain, as a lower bound

MSNA: multi source no adaptation — a regression model trained on data from
all source domains, without adaptation to the target domain. The fact that
the training data comes from multiple domains is not taken into account.
This is another, stronger baseline.

TARGET: a regression model is trained on the data from the target domain
(via cross-validation). Note that in reality this is not a feasible method
since the training needs labeled target data, which we assumed is unavail-
able in practice. This model serves as an upper baseline.

OURS: our proposed method. Here, all reported scores are 5-fold crossvalida-
tion scores, meaning that 4 parts of the target data are used to determine
the target model, and the fifth part for evaluation, averaged over five runs.

We use SA, CORAL, and TCA from the ADAPT library [5]. Hyperparameters
are optimized and set as follows: for SA, the number of components is equal to
the number of features (i.e. the number of sensors). Since for CORAL, hyperpa-
rameter optimization sets the regularization parameter very large, which would
imply no adaptation at all, we instead choose it as 1 as proposed in the original
paper. For TCA we set ;= 0.6128 and the number of components to 7.

We perform two variations of the experimental evaluation: Firstly, we keep
the number of source persons fixed at 10 and vary the number of sensors ny
between 3, 5, and 8. This way, we test how well the DA methods deal with
more or less complex data. Secondly, we set the number of sensors to 5, and use
3, 6, or 10 source persons to examine how the performance of the multisource
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Table 1: Varying number of sensors/features, R? score (higher values are better),
mean =+ standard deviation, 10 source persons. Note that TARGET is the upper
baseline and has the target labels, unlike the other methods. “cost” is relative
to TARGET, approximated from the runtime on a CPU, and refers to 8 sensors.

method 3 sensors 5 sensors 8 sensors cost

OSNA 0.740 £ 0.248 0.843 +£0.150 0.864 =+ 0.211 1.0

SA 0.697 £0.197 0.807 +£0.141 0.875 =+ 0.119 2.5

CORAL 0.635 £ 0.370 0.654 =+ 0.335 0.570 =+ 0.462 1.9
TCA 0.739 =£0.248 0.843 =£0.150 0.855 =+ 0.215 656
MSNA 0.825 +£0.117 0913 =£0.069 0.942 =+ 0.051 1.2
BayesMSDA 0.829 £+ 0.111 0914 £ 0.070 0.938 =+ 0.054 2894
OURS 0.866 +£0.081 0.926 =+ 0.055 0.954 = 0.036 8.5
TARGET 0.901 £0.049 0.948 =£0.033 0.978 =+£0.013 1.0

methods changes. For comparison, the coefficient of determination (R?) is used,
which is higher the better the prediction is, and 1 for a perfect prediction.

We test 39 different sensor placements (each based on 10 randomly chosen
persons), then the domain adaptation is done six times, with each of the feet
not used for sensor placement as the transfer target. Thus, each reported mean
is from 234 runs.

5 Results

The results for varying the number of sensors are shown in Table[l] SA, CORAL,
and TCA perform no better than OSNA (often worse), and BayesMSDA per-
forms similar to MSNA. Our method performs much better than MSNA and
BayesMSDA.

Table [2| depicts the results for more or fewer source domains/persons. Even
with only 3 source persons, all multisource methods have a notable advantage
over single source methods. As it can be expected, all multisource methods be-
come better with more source domains. Our proposed method especially benefits
from more source domains: for 3 persons, the difference between our method and
MSNA is small, but becomes much larger for 6 and 10 persons.

6 Conclusion

In this work, we have presented a new method for unsupervised multi-source
domain adaptation for regression problems. It is based on a problem-specific
distance function that respects the unique challenges of this problem. In exper-
iments, we have shown that it performs well, achieving a higher score than all
competitors and not far off from the upper baseline. In the future, we might
explore how this idea could be used on related domain adaptation problems for
wearables.

225



ESANN 2024 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 9-11 October 2024, i6doc.com publ., ISBN 978-2-87587-090-2.
Available from http://www.i6doc.com/en/.

Table 2: Varying number of source persons, R? score (higher values are better),
mean =+ standard deviation, 5 sensors. Note that TARGET is the upper baseline
and has the target labels, unlike the other methods.

method 3 persons 6 persons 10 persons

OSNA 0.849 £ 0.130 0.858 =+ 0.116 0.843 =+ 0.150

SA 0821 £0.136 0.812 +£0.146 0.807 =+ 0.141

CORAL 0.628 £ 0.485 0.648 +£0.442 0.654 =+ 0.335
TCA 0.848 +£0.131 0.858 +£0.116 0.843 =+ 0.150
MSNA 0.908 +£0.069 0.911 =+£0.070 0.913 =+ 0.069
BayesMSDA 0.904 =+ 0.070 0.910 =+ 0.072 0.914 = 0.070
OURS 0912 £ 0.064 0921 =+ 0.059 0.926 =+ 0.055
TARGET 0.948 £ 0.033 0.948 +£0.033 0.948 = 0.033
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