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Abstract. Efforts to reduce energy consumption in buildings are crucial
for climate change concerns. In this sense, energy monitoring increases
energy awareness and mitigates energy wastes. This study integrates ma-
chine learning models, advanced visualisations, and interactive tools to
create an insightful energy monitoring dashboard. Novel contributions
include a 2D map of daily energy demand profiles combining spatial en-
codings based on t-SNE, fluid aggregation, and filter operations via a data-
cube framework, as well as visual encoding powered by morphing projec-
tions. This approach facilitates the decisions of end users regarding the
optimisation of energy in residential facilities.

1 Introduction

Climate change, energy crises, and the quest for greater energy independence
have recently prompted governmental organisations and companies to accelerate
efforts to reduce energy consumption. In this challenge, electric energy moni-
toring plays an important role in commercial and residential buildings, which
together account for 30% of global energy consumption [1].

Energy monitoring tools aim to improve the energy use of end users by pro-
viding intuitive representations of the energy demand, leading to a better energy
awareness (i.e. understanding of energy demand) and avoiding energy waste [2].
In this context, Machine Learning (ML) techniques have been widely studied as
powerful tools for disentangling energy demand time series. Particularly, non-
intrusive load monitoring, energy consumption forecasting and anomaly detec-
tion models exemplify ML-based energy monitoring tools. Although ML-based
models excel human beings on unveiling unknown knowledge from raw energy
demand time series, their well-known lack of interpretability may be detrimental
to energy awareness.

In this work, we bring the user into the loop of analysis by integrating ML-
based models of energy demand time series, advanced data visualisation and
fluid interaction tools into an insightful energy monitoring dashboard. Some
authors have previously suggested data visualisation approaches for monitoring
the energy demand of large buildings and households [3], however, most of these
approaches focus on static visualisations that lack fluid interactive elements.
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Only a few visual analytics approaches have explored the potential synergies
between ML, data visualisation, and fluid interaction [4].

Our approach revisits previous visual analytics methodologies for monitoring
energy demand in residential facilities, presenting the following contributions: 1)
a 2D map of daily energy demand profiles based on t-SNE; 2) fluid aggregation
and filter operations enabled by a data-cube framework [5]; and 3) insightful
visual encoding of the daily profiles using sparklines charts and morphing pro-
jections [6].

2 Data-Cube framework

Fluid aggregation and filter operations allow end users to decompose the energy
demand analysis into meaningful sub-problems. For instance, users can refine
their analysis by filtering based on different attributes (such as location, type of
building, or time of day), or aggregating the energy demand by different time
intervals (i.e. daily, weekly or monthly profiles).

The data cube model speeds up filter and aggregation operations by efficiently
indexing data into a hypercube [5]. In a multidimensional table D containing all
energy demand records, the sides of the data cube are defined by the attributes.
Each attribute ai represents a finite set of discrete values or groups obtained
after applying a grouping operation to the records of the i-th column of D:

ai = {gi1, gi2, . . . , gi|ai|} i = 1, 2, . . . , n

Here, gi1 represents the first group for the i-th attribute, |ai| denotes the
cardinality of attribute ai, and n is the number of attributes defining the di-
mension of the resulting structure. The resulting data cube structure, denoted
as C(a1, a2, . . . , an), consists of cells with coordinates

(
g1, g2, . . . , gn

)
, where all

records in D are arranged. In this cell configuration, aggregation, filter, and
projection operations can be applied to groups rather than individual records,
thereby significantly reducing the number of elements involved.
Projection operation restricts the multivariate analysis to a few attributes se-
lected by the users:

Πa1,a2,...,apC(a1, a2, . . . , an) → C(a1, a2, . . . , ap) (1)

It returns a contracted p-dimensional cube, being p < n and {a1, a2, . . . , ap} ⊂
{a1, a2, . . . , aN}. In our approach, users select the active attributes1 ap by vary-
ing the attribute importance coefficients λp, so that the cube is projected onto
the attributes ap with 0 ≤ λp ≤ 1.
Filter operation entails selecting specific groups in one or more attributes of the
cube:

σ al={p,q}
ai={a,b,c}

C(a1, a2, . . . , an) → C(a1, a2, . . . , {a, b, c}︸ ︷︷ ︸
ai

, . . . , {p, q}︸ ︷︷ ︸
al

, . . . , an) (2)

1For the sake of simplicity, the attributes involved in the data cube’s projection are denoted
as active attributes.
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where {p, q} and {a, b, c} represent the filtered groups for the attributes al and
ai, respectively. In our dashboard, users can simultaneously select contiguous
range of groups across multiple attributes by means of a set of sliders.
Aggregation operation summarises the information within cells by applying
an user-defined aggregation procedure A to the records contained in each cell.
Mean, standard deviation, maximum, minimum or even more sophisticated user-
defined functions are examples of aggregation procedures. In our approach, A is
set to the average of the daily profiles (time series of 24 time-steps) within each
cell. Note that if more than one electric variable is measured, users can select
the variable by which the daily profiles are aggregated.

3 Visual encoding and morphing projections

The aggregated profiles are presented to end users in a 2D map as sparklines.
Their position in the map is derived by the cells’ index in the data cube, so
that a set of coordinates or spatial encoding Ei is assigned to the groups of the
attributes ai by means of a lookup table:

ai gi1 gi2 · · · gi|ai|
Pi pi

1 pi
2 · · · pi

|ai|

where pi
j ∈ R2. A set of different spatial encodings P1,P2, . . . ,Pp can be cre-

ated for the active attributes of the data cube. In order to provide the user
with an interactive and fluid mechanism to mix the available spatial encodings
and to transition progressively between them, the morphing operation maps
P1,P2, . . . ,Pp into a final set of coordinates Pλ = {pλ

k }k=1,2,...,K
2, setting a

linear combination of the encodings:

pλ
k =

p∑
i=1

λip
i
k (3)

where λi are the attribute importance coefficients and typically
∑p

i λi = 1.
Importance coefficients are attached to sliders in the final dashboard by which
the user can smoothly switch between views and modify the projection operation
at the same time.

4 ML-based spatial encodings

The location of the sparklines in the 2D map plays an important role in our
proposal, since it enables the spatial arrangement of the information by multiple
attributes simultaneously, thus facilitating the multi-way analysis. Our dash-
board offers both user-defined and ML-based encodings. User-defined encodings
distribute the groups of the cube using basic layouts, such as vertical, horizontal
or circular arrangements [6]. Meanwhile, coordinates in ML-based encodings are

2Here, K is the number of active cells K = |a1 × a2 × · · · × ap|.
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computed by applying a dimensionality reduction model to the energy demand
records. In our approach, the t-SNE model [7] is used to reduced daily energy
demand profiles into 2D coordinates, providing the users with a spatial encoding
that organizes energy consumptions patterns in terms of similarities.
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(b) Monthly view (c) Daily view

Fig. 1: Examples of the average energy demand profile (a), monthly view (b), and
calendar view filtered by the Furnance appliance (c) are obtained by activating
one attribute after another using the configuration sliders (top).

5 Results

Experimental set-up. The proposed method is tested using one year of elec-
tric energy demand data from the publicly available dataset, the Almanac of
Minutely Power dataset (AMPd) [8]. The dataset contains records of the total
energy consumption of a house and 22 appliances, collected with a sampling
period of one minute. Before computing the data cube and the t-SNE, the en-
ergy records are subsampled to a ten-minute sampling period. The ML-based
encoding is computed using the t-SNE method applied to the daily profiles of
the total energy demand of the house3. All the details and source code of the

3The hyperparameters for t-SNE are manually set to: perplexity = 15; epochs = 2000,
early exaggeration = 12.
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application are available in our public repository4, and the application itself is
accessible in the following link: https://gsdpi.edv.uniovi.es/apps/energy_
dcMP/energy_dcMP.html.
Dashboard. Fig. 1 exemplifies a multi-way analysis, where a transition from a
general perspective to a detailed analysis of the energy demand in the house is fa-
cilitated by the data cube operations and morphing projections. The user starts
from an aggregated perspective of all daily profiles (Fig. 1a). Then, the cube is
projected into the month attribute by increasing λMonth, using its corresponding
encoding slider and selecting a circular encoding. This provides the user with a
circular view where monthly energy consumptions can be insightfully compared
(Fig. 1b). The user can dive into the monthly profiles by increasing λDay of Week

and λDay of Month with horizontal and vertical encodings, respectively, resulting
in a calendar view where all daily profiles are displayed (Fig. 1c). The analysis
can be further detailed by adding filters. In Fig. 1, the calendar view includes a
filter on Furnance attribute, intuitively highlighting the days when the house’s
furnace was in use.

(a) 𝒜 → avgMain consumption 𝒜 → avgHeat pump 𝒜 → avgClothes dryer

(b) σMonth=[0,3] C σMonth=[3,5] C σMonth=[5,7] C

Fig. 2: (a) Analysis of t-SNE view by different aggregations. (b) Analysis of t-
SNE view aggregated by the Main consumption attribute using different filters.

In Fig. 2, several views of the t-SNE encoding are shown. In Fig. 2(a), the
t-SNE projection is illustrated using the average of the Main consumption, Heat

4https://github.com/gsdpi/energy_monitoring_esann24
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pump, and Clothes dryer daily profiles as aggregation procedures A. Aggrega-
tion by heat pump suggests that the winter profiles are grouped at top, while
summer profiles at the bottom of the t-SNE view. Furthermore, aggregation by
Clothes dryer shows that some clusters are related to midnight consumptions
of the clothes dryer (see framed detail in Fig. 2). In Fig. 2(b), the areas of the
t-SNE related to winter, spring, and summer are revealed by filtering the data
cube by Month.

6 Conclusions

The proposed interactive approach exhibits preliminary, though encouraging,
results on the analysis of energy demand patterns in residential facilities. Mor-
phing projections along with the aggregation, projection and filter data cube
operations facilitate the generalised analysis, but also detailed energy demand
exploration, allowing end users to better understand their consumption from
various perspectives. In addition, the integration of ML-based spatial encodings
into the analysis helps users to correlate ML-based maps with specific appliance
usage patterns through filtering and aggregation operations. This approach not
only enhances comprehension but also facilitates informed decision-making re-
garding energy usage optimisation and efficiency improvements.
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