
Generalizing Convolution to Point Clouds
Davide Bacciu and Francesco Landolfi

Università di Pisa - Department of Computer Science
Largo Bruno Pontecorvo, 3, 56127, Pisa - Italy

Abstract. Convolution, a fundamental operation in deep learning for
structured grid data like images, cannot be directly applied to point clouds
due to their irregular and unordered nature. Many approaches in literature
that perform convolution on point clouds achieve this by designing a
convolutional operator from scratch, often with little resemblance to the
one used on images. We present two point cloud convolutions that naturally
follow from the convolution in its standard definition popular with images.
We do so by relaxing the indexing of the kernel weights with a “soft”
dictionary that resembles the attention mechanism of the transformers.
Finally, experimental results demonstrate the effectiveness of the proposed
relaxations on two benchmark point cloud classification tasks.

1 Introduction

Convolutional neural networks (CNNs) [1] have revolutionized numerous computer
vision tasks due to their ability to extract hierarchical features from structured
grid data like images. However, applying CNNs directly to 3D point clouds,
which represent objects as unordered sets of points, proves challenging. Unlike
images, point clouds lack inherent structure and ordering, making standard
convolution operations inapplicable. This hurdle has motivated researchers to
develop specialized convolution approaches for point cloud data. The pioneering
work of Qi et al. [2] paved the way for deep learning on point clouds. Their
approach bypassed the need for traditional convolutions altogether, proposing
instead an invariant operator based on set abstraction. Many follow-up works,
such as Pointnet++ [3] and DGCNN [4], also proposed different convolution
operators on point clouds that share little with the one performed on images
or voxel grids. In this paper, we derive instead two relaxations—continuously
differentiable approximations—of the convolution operation on grid data that
is applicable to unordered sets of points. We achieve this by substituting the
indexing of the kernel weights performed by the convolution with a “soft” dic-
tionary that resembles the attention mechanism of the transformers [5]. We
test both relaxations and their depthwise variants on two standard point cloud
classification datasets, on which they obtain comparable results with respect to
common point cloud convolution baselines from literature.

2 Generalizing Convolution to Point Clouds

Given the tensors X ∈ Rb1×···×bd×f , Z ∈ R(b1−c1+1)×···×(bd−cd+1)×g, and K ∈
Rc1×···×cd×f×g, a d-dimensional multi-channel convolution [1] can be defined as

Zi1,...,id,k =
[
conv(X,K)

]
i1,...,id,k

=
∑

j1,...,jd,h

Xi1+j1,...,id+jd,h · Kj1,...,jd,h,k, (1)

23

ESANN 2024 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 9-11 October 2024, i6doc.com publ., ISBN 978-2-87587-090-2.
Available from http://www.i6doc.com/en/.

where X, Z, and K, represent, respectively, the input, the output, and the kernel
tensors.1 Using a vectorial notation of the indices (all tensor indices start from 0),
where Xi = Xi1,...,id with i = [i1, . . . , id]

⊤, we can rewrite eq. (1) as

Zi =
[
conv(X,K)

]
i
=

∑
j∈C

Xi+j · Kj, (2)

where C = [c1] × · · · × [cd], with [c] = {0, 1, . . . , c − 1}. Notice that Zi ∈ Rg,
Xi+j ∈ Rf , and Kj ∈ Rf×g, for all j ∈ C. Another way to see eq. (2) is by
obtaining the output entries by means of the neighbouring ones, that is,

Zi =
[
conv(X,K)

]
i
=

∑
h∈N(i)

Xh · Kh−i, (3)

where N(i) = {i+ j | j ∈ C} denotes the set of neighbouring indices of i.
From eqs. (2) and (3) we can derive two relaxations, that allow us to generalize

convolution to (possibly irregular, non-grid-like) point clouds.

First relaxation. Equation (2) can be also represented as a point cloud convo-
lution, as follows. Let V = [n] with n =

∏d
i=1 bi and assume w.l.o.g. that the

convolution is “centered”, that is, that the convolution size is odd and uniform
across all the dimensions, i.e., C = {−c,−c+ 1, . . . , 0, . . . , c− 1, c}d for some
constant c ∈ N, and that the input is properly zero-padded (all these assump-
tion can be replaced by a using a suitable metric and a proper transformation
of the indices). Instead of using vector indices, we can vectorize (or “flatten”)
the tensors up to their d-th dimensions, obtaining X ∈ Rn×f , Z ∈ Rn×g, and
K ∈ R|C|×f×g, and store instead the d-dimensional vector indices in the auxiliary
matrix P ∈ Rn×d, such that XPv

= Xv for all v ∈ V . This is a common scenario
in point cloud tasks, where P is used to store the geometric information of
the points, also referred as coordinate matrix, while X contains instead other
attributes of the points and is generally referred as feature matrix. In our setting,
similarly to the coordinate matrix, we also define the offset matrix C ∈ R|C|×d

containing all the elements of C. We can now reformulate eq. (2) as follows:

Zv =

|C|−1∑
i=0

Xu∗Ki s.t. Pu∗ = Pv +Ci. (4)

We still cannot apply straightforwardly eq. (4) to a generic point cloud, since
Pu + Ci may not correspond to any point in P. Hence, we can look for the
nearest point available, as follows:

Zv =

|C|−1∑
i=0

Xu∗Ki s.t. u∗ = argmin
u

δ(Pv +Ci,Pu), (5)

1Equation (1) should be called “cross-correlation” instead, but in a learning setting it makes
no difference whether the kernel is flipped or not.

24

ESANN 2024 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 9-11 October 2024, i6doc.com publ., ISBN 978-2-87587-090-2.
Available from http://www.i6doc.com/en/.

where δ : Rd ×Rd → R is any distance function, such as δ(x,y) = ∥x− y∥. We
can further relax eq. (5) by making it smoothly differentiable by substituting the
argmin with a softmin, as follows:

Zv =

|C|−1∑
i=0

∑
u∈V

e− δ(Pv+Ci,Pu)∑
w e− δ(Pv+Ci,Pw)

XuKi. (6)

In this way, C ∈ R|C|×n can also be parametrical, allowing the offsets to be
learned adaptively from data. With this last step, we completely replaced the
“indexing” performed by convolutions in eq. (2) with an attention mechanism [5],
where the keys are formed by the point coordinates P, the values are the
point features X, and the queries are instead the neighboring points defined by
Pv +Ci. To avoid computing an attention matrix of size O(n2), which prevents
this formulation to scale to large point clouds, we can “mask” distant points and
compute the softmin only on the k nearest ones, as follows:

Zv =

|C|−1∑
i=0

∑
u∈N [v]

e− δ(Pv+Ci,Pu)∑
w e− δ(Pv+Ci,Pw)

XuKi, (7)

where N [v] = k-NN(v,P) is the k-nearest neighbors of v in P, containing v itself.

Second relaxation. We can derive a similar relaxation by starting instead from
eq. (3), as follows. First, we reformulate the definition of neighboring nodes, by
adopting instead a closed ball around the “central” node,

Zv =
∑

u∈Bc[v]

XuKi∗ s.t. Ci∗ = Pu −Pv, (8)

where Bc[v] = {u ∈ N | ∥Pu −Pv∥∞ ≤ c}. Notice that we adopted the infinity
norm inside the ball to mimic the “(hyper-)cubic” shape of the convolution’s
receptive field, but we could also use any other form of neighbourhood such as a
2-norm ball or the k-nearest neighbors. Notice also that, again, we still cannot
apply straightforwardly eq. (8) to a generic point cloud, since the offset Pu −Pv

may not lie in C. We can then apply a first relaxation to eq. (8) by assigning
every neighbor displacement to the nearest available offset, as follows:

Zv =
∑

u∈Bc[v]

XuKi∗ s.t. i∗ = argmin
i

δ(Pu −Pv,Ci). (9)

We can further relax eq. (9) by making it smoothly differentiable, as follows:

Zv =
∑

u∈Bc[v]

|C|−1∑
i=0

e− δ(Pu−Pv,Ci)∑
j e

− δ(Pu−Pv,Cj)
XuKi. (10)

In this way, we allow again C ∈ R|C|×n to be parametrical, so that the offsets
are learned adaptively from data. In this case, differently from the previous
relaxation, the “indexing” performed by convolutions in eq. (3) is replaced by an
attention mechanism, where the keys are formed by the offsets in C, the values
are the filters K, and the queries are instead the neighbors’ offsets Pu −Pv.

25

ESANN 2024 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 9-11 October 2024, i6doc.com publ., ISBN 978-2-87587-090-2.
Available from http://www.i6doc.com/en/.

Depthwise convolution. The two relaxation only affect the way the kernels are
averaged together but not do affect instead how they are applied to the feature
matrix, i.e., the XuKi part remains untouched throughout the relaxations. This
allows us to generalize the two relaxations also to other kinds of operations, such
as the depthwise convolution [6]. In the depthwise convolution, defined as

Zi1,...,id,k =
[
dw-conv(X,K)

]
i1,...,id,k

=
∑

j1,...,jd

Xi1+j1,...,id+jd,k · Kj1,...,jd,k, (11)

the input and output tensors have the same number of features f , and the
kernel tensor has shape K ∈ Rc1×···×cd×f . In the point cloud setting, we have
K ∈ R|C|×f and, if we go over the first relaxation steps again, we obtain

Zv =

|C|−1∑
i=0

∑
u∈N [v]

e− δ(Pv+Ci,Pu)∑
w e− δ(Pv+Ci,Pw)

Xu ◦Ki, (12)

where ◦ denotes the element-wise product. A similar formulation can be obtained
also for the second relaxation.

3 Related Works

The idea of trainable offsets, even if applied to images, can be dated back to
deformable convolution [7]. In their paper, the authors proposed a convolution
with variable spacings, similar to our first relaxation, but where the features
where aggregated via a bilinear interpolation kernel. In the point cloud literature,
instead, we can find several works with a formulation more similar to our second
relaxation: in FeaSTNet [8], the authors generalized the convolution by averaging
the kernel weights through a (soft-maxed) linear transformation of the local
feature vectors, in PointConv [9], the authors averaged the kernel weights via
a kernel density estimation, in KPConv [10], via a linear correlation, and in
PAConv [11], by using a neural network.

4 Experiments

We tested both relaxations on two standard point clouds classification tasks
from literature, ModelNet40 [12] and ScanObjectNN [13]. In the experiments,
we used DGCNN [4] as a backbone classifier, where every of its dynamic edge
convolution layer was substituted by a relaxed convolution having the same
number of channels. The training was performed following the SimpleView [14]
protocol: random translation and scaling of the training samples, cross-entropy
loss with label smoothing (0.2), and fixed-number of points per sample (1024,
with no resampling). As in SimpleView, the final models were obtained after a
pre-fixed number of epochs (60), with no feed-back from the test set. To speed
up convergence, we used cosine annealing with a warm restart after 20 epochs. In
both relaxations we used a k-nearest neighbors with k = 8 and we set the number
of offsets to 8. These settings were chosen after a preliminary evaluation on a

26

ESANN 2024 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 9-11 October 2024, i6doc.com publ., ISBN 978-2-87587-090-2.
Available from http://www.i6doc.com/en/.

ModelNet40 ScanObjectNN

Accuracy Bal. Acc. Accuracy Bal. Acc.

SimpleView 93.0± 0.4 90.5± 0.8 79.5± 0.5 —±—
PointNet 89.2± 0.9 85.1± 0.6 68.2±— —±—
PointNet++ 92.7± 0.1 90.0± 0.3 77.9±— —±—
DGCNN 91.9± 0.3 89.1± 0.3 78.1±— —±—

First Relaxation 91.40± 0.31 88.15± 0.58 72.18± 0.81 66.62± 1.04
First Rel. (DW) 91.32± 0.25 87.57± 0.43 71.93± 0.75 66.48± 1.20
First Rel. (Mobile) 91.77± 0.25 88.58± 0.48 74.13± 0.92 69.28± 1.10

Second Relaxation 90.82± 0.20 86.53± 0.52 67.41± 1.11 63.29± 1.31
Second Rel. (DW) 90.36± 0.35 85.51± 0.54 67.92± 0.51 64.08± 0.91
Second Rel. (Mobile) 90.18± 0.28 84.85± 0.51 65.16± 0.76 57.18± 0.98

Table 1: Classification accuracy and balanced accuracy (mean ± std).

validation split (10% of the training dataset). In table 1 we report the average
accuracy and balanced accuracy obtained by our relaxations on 10 train/test runs
for every model. The relaxations were also tested in their depthwise variant (DW),
and in the “inverted residual” variant (Mobile), as proposed in MobileNetV2 [6],
were the depthwise convolution is preceded by an expansion layer (6× channels)
and followed by a reduction one. We also restate the accuracies of four common
baselines (SimpleView, PointNet/++, DGCNN) as reported in the original paper
of the SimpleView training protocol [14]. Missing values were not reported in the
paper.

We can see from the results in table 1 that our relaxations produced results
comparable to the given baselines. Our relaxation is superior to the lowest
performing one (PointNet) almost everywhere, while obtaining a similar result
to the backbone model (DGCNN) only when using the first relaxation with
the inverted residual setting. Depthwise convolution alone seem to worsen the
performance of both relaxations, while it obtained the best results in the mobile
setting when combined with the first relaxation. Overall, most baselines obtained
better results with respect to our relaxations, which may indicate that their
informed inductive bias plays favorably in point clouds tasks compared to one of
the general classical convolution.

5 Conclusions

This paper proposes two significant relaxations of the standard convolution
operation, specifically tailored for unordered point cloud data. These relaxations
address the inherent limitations of classical convolutions, which struggle with the
irregular structure of point clouds. The core idea lies in substituting the rigid
indexing of kernel weights with a soft attention mechanism. This enables the
convolutions to adaptively focus on relevant neighboring points or offsets between
points, leading to more robust feature extraction. The experimental evaluation

27

ESANN 2024 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 9-11 October 2024, i6doc.com publ., ISBN 978-2-87587-090-2.
Available from http://www.i6doc.com/en/.

shows that the proposed relaxations achieve comparable performance to existing
point cloud convolution methods. This indicates that the relaxations offer a
viable alternative framework for applying convolutions to unordered data, while
potentially opening doors for further exploration of generalizable convolution
operations on such data structures.

References

[1] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.

[2] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “PointNet: Deep learning on point sets for 3d
classification and segmentation,” presented at the Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2017.

[3] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “PointNet++: Deep hierarchical feature learning
on point sets in a metric space,” in Advances in Neural Information Processing Systems
30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, Eds., Curran Associates, Inc., 2017.

[4] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon, “Dynamic
graph CNN for learning on point clouds,” ACM Transactions on Graphics, vol. 38, no. 5,
2019.

[5] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,
and I. Polosukhin, “Attention is All you Need,” in Advances in Neural Information
Processing Systems, vol. 30, Curran Associates, Inc., 2017.

[6] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “MobileNetV2: Inverted
residuals and linear bottlenecks,” presented at the Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2018.

[7] J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, and Y. Wei, “Deformable convolutional
networks,” presented at the Proceedings of the IEEE International Conference on
Computer Vision, 2017.

[8] N. Verma, E. Boyer, and J. Verbeek, “FeaStNet: Feature-steered graph convolutions for
3d shape analysis,” presented at the Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2018.

[9] W. Wu, Z. Qi, and L. Fuxin, “PointConv: Deep convolutional networks on 3d point
clouds,” presented at the Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2019.

[10] H. Thomas, C. R. Qi, J.-E. Deschaud, B. Marcotegui, F. Goulette, and L. J. Guibas,
“KPConv: Flexible and deformable convolution for point clouds,” presented at the
Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019.

[11] M. Xu, R. Ding, H. Zhao, and X. Qi, “PAConv: Position adaptive convolution with dy-
namic kernel assembling on point clouds,” presented at the Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2021.

[12] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, “3d ShapeNets: A
deep representation for volumetric shapes,” in 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), ISSN: 1063-6919, 2015.

[13] M. A. Uy, Q.-H. Pham, B.-S. Hua, T. Nguyen, and S.-K. Yeung, “Revisiting point cloud
classification: A new benchmark dataset and classification model on real-world data,”
presented at the Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2019.

[14] A. Goyal, H. Law, B. Liu, A. Newell, and J. Deng, “Revisiting point cloud shape
classification with a simple and effective baseline,” in Proceedings of the 38th International
Conference on Machine Learning, ISSN: 2640-3498, PMLR, 2021.

28

ESANN 2024 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 9-11 October 2024, i6doc.com publ., ISBN 978-2-87587-090-2.
Available from http://www.i6doc.com/en/.

	PapersAndBack
	AllPapers
	Wednesday
	ES2024-145-2

