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Abstract. Quantifying the predictive uncertainty of a model is essen-
tial for risk assessment. We address the proper calibration of the predic-
tive uncertainty in regression tasks by employing the probability integral
transform (PIT) histogram to diagnose miscalibration. PIT histograms are
often difficult to interpret, and therefore we present an approach to an au-
tomatic interpretation of PIT histograms based on an interpreter trained
with a synthetic data set. Given a PIT histogram of a model and a data
set, the interpreter can estimate the data-generating distribution of the
data set with the main purpose of identifying the cause of miscalibration.

1 Introduction

Predictive (especially machine learning) models are prevalent in real-world appli-
cations. Although these models are useful, the task of making perfect predictions
remains unattainable. To allow risk assessment, we have to quantify the pre-
dictive uncertainty that is generally represented by a probability distribution.
Assessing the quality of those uncertainties is an essential task that we address
in this paper.

A key to this task is the paradigm of maximising the sharpness of predictive
distributions subject to their calibration [1]. Here, we focus on regression tasks
and use the probability integral transform (PIT) histogram as a tool for misca-
libration diagnosis. In the machine learning literature, the calibration plot (also
known as the reliability diagram) is a common tool to diagnose miscalibration.1

One should be able to diagnose miscalibration by visually inspecting a PIT his-
togram or calibration plot. However, understanding the cause of miscalibration
requires a lot of experience. Scalar scores such as the calibration error [2] express
only the degree of miscalibration, not its cause.

∗Ondřej Podsztavek, Alexander I. Jordan, and Kai L. Polsterer gratefully acknowledge
the generous and invaluable support of the Klaus Tschira Foundation. Ondřej Podsztavek
acknowledges the support of his co-supervisor Petr Škoda, and the Grant Agency of the Czech
Technical University in Prague (No. SGS23/209/OHK3/3T/18).

1These two tools are equivalent because both display an estimate of the PIT distribution:
the PIT histogram shows a density estimate, whereas the calibration plot displays an estimate
of the cumulative distribution function.
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2 Calibration, PIT histograms & proper scoring rules

Following [1], at instance i ∈ {1, . . . , n}, nature chooses a true data-generating
distribution Gi and a predictive model picks a predictive cumulative distribution
function (CDF) Fi. Both Gi and Fi might depend on stochastic parameters.
The predictive distributions are probabilistically calibrated relative to the true
data-generating distributions if 1

n

∑n
i=1 Gi ◦ F−1

i (p) → p for all p ∈ (0, 1) where
the arrow denotes the almost sure convergence as n → ∞. This definition is
equivalent to the uniformity of PIT values {pi = Fi(yi) | i ∈ {1, . . . , n}}, where
an outcome yi is a random number with distribution Gi. The PIT is translation-
and scale-invariant. We diagnose miscalibration by visualising the histogram of
PIT values (hereafter the PIT histogram) and inspecting its shape.

Simple causes of miscalibration (bias, underdispersion and overdispersion)
can be identified easily. They express themselves respectively as a PIT histogram
with a single peak at an edge, a U-shaped and a bell-shaped PIT histogram.
However, if the cause of miscalibration is not a simple one or multiple causes co-
occur, potential shapes of PIT histograms cannot be easily enumerated, which
makes their interpretation difficult or even impossible for inexperienced users.
Therefore, we provide a user-friendly interpretation of PIT histograms, from
which users can recognise causes of miscalibration. Subsequently, users can deal
with those causes and get more reliable predictive distributions.

The PIT histogram is a useful diagnostic tool, but unsuitable for comparing
two predictive models. To compare predictive models, we employ proper scoring
rules. A scoring rule is a loss function for predictive distributions, as opposed to
point predictions. It is proper if it has the property that a predictive distribution
that matches the true data-generating distribution minimises the expected score.
Implicitly, that property means that a proper scoring rule measures calibration
and sharpness jointly. The two most used proper scoring rules are the negative
log-likelihood NLL(fi, yi) = − log fi(yi), where fi denotes the probability density
function corresponding to CDF Fi, and the continuous ranked probability score,
CRPS(Fi, yi) =

∫
(Fi(a) − 1a≥yi) da. We need to use a proper scoring rule to

measure and confirm the improvement in predictive performance that can be
achieved by dealing with causes of miscalibration.

3 Automatic interpretation of PIT histograms

To facilitate an interpretation of a PIT histogram, we propose to perform a
decomposition into a data-generating and a predictive distribution. These dis-
tributions allow us to reconstruct a PIT histogram that is close to the original
PIT histogram. We achieve this decomposition using a machine learning model
called an interpreter. Because the PIT is translation- and scale-invariant, an
interpreter trained on a synthetic data set of PIT histograms can interpret a
given PIT histogram independently of the original translation and scale of data-
generating and predictive distribution pairs. Given the PIT histogram of a
predictive model and data set, its interpretation allows us to diagnose miscali-
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bration of the model by comparing the estimated data-generating and predictive
distribution.

3.1 Synthetic data set of PIT histograms

A synthetic data set has to be relevant to the particular application, i.e. relevant
to expected data-generating and predictive distributions. The synthetic data
set consists of m PIT histograms with b bins, each generated from n pairs of
data-generating and predictive distributions.

We generate the j-th PIT histogram, where j ∈ {1, . . . ,m}, by first generat-
ing a set of PIT values, and then assigning these PIT values to the predefined
bins. Technically, that means choosing a pair of predictive and data-generating

CDFs (F
(j)
i and G

(j)
i ) for each i ∈ {1, . . . , n}, sampling an outcome y

(j)
i from

G
(j)
i , and computing pi = F

(j)
i (y

(j)
i ). Then, we assign the PIT values into b bins,

and calculate the corresponding relative frequencies, such that the area under
the histogram integrates to 1 and is therefore independent of n.

3.2 Interpreter

The input of the interpreter is a PIT histogram, and its output estimates the
data-generating distribution that led to the PIT histogram. In particular, be-
cause a mixture of normal distributions can approximate any data-generating
distribution if it has enough components, the interpreter is a mixture density
network (MDN) [3]. To allow data-generating distributions of the synthetic data
set to be from any family of distributions, the interpreter is trained with a Monte

Carlo approximation to 1-Wasserstein distance between true G
(j)
i and predicted

Ĝ(j) data-generating CDFs:

1

m

m∑
j=1

1

n

n∑
i=1

o∑
k=1

|G(j)
i (ak)− Ĝ(j)(ak)|,

where a1 < · · · < ao are equally spaced real numbers, a1 and ao are chosen

according to the domain of the data-generating CDF G
(j)
i , and o is large enough

to get a sufficiently accurate approximation.

4 Experiments

In probabilistic modelling, unimodal predictive distributions are often used to
model multimodal data-generating distributions (e.g. [4, 5]). Therefore, we
choose to experiment with a simple synthetic data set based on the normal

family. For the j-th PIT histogram, every outcome y
(j)
i is a random number

from a data-generation distribution G
(j)
i . For simplicity, we assume that G

(j)
i

is the same for all i. Specifically, G(j) is a mixture of two normal distribu-

tions, i.e. y
(j)
i takes a random value from N (−d(j)/2, t(j)) with probability w(j)

or N (d(j)/2, v(j)) with probability 1 − w(j). By manipulating the parameters
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Fig. 1: The PIT histogram (left) of a density network (DN) trained to solve the
simple synthetic inverse problem and its interpretation (right).

separation d(j), weight w(j), and variances t(j) and v(j), we can obtain PIT
histograms of predictive models that are calibrated, under- and overestimated,
under- and overdispersed, or have an incorrect number of modes. For simplicity,

we fix the predictive distribution F
(j)
i to N (0, 1) for all i and j. On the simple

synthetic inverse problem and real-world data sets in sections 4.1 and 4.2, we
observe that reconstructed PIT histograms match the original PIT histograms.
This is already possible with the current choices of the fixed predictive distribu-
tion and the family of data-generating distributions. We will experiment with
further distributions from various families with even more modes in the future.

In order to have a wide range of visually distinct PIT histograms in the
synthetic data set of the interpreter, we decided to 1. define separation d(j) =
2(1 − a(j)a(j)), where a(j) is sampled from the continuous uniform distribution

U(0.1, 1), 2. define variances t(j) = 2b
(j)

and v(j) = 2c
(j)

, where b(j) and c(j) are
sampled from U(−2, 2), and 3. sample weight w(j) from U(0, 1). Each generated
PIT histogram has b = 20 bins containing a total of n = 104 PIT values per
histogram.

Our experimental interpreter has a single hidden layer with 16 neurons and
outputs a mixture of five normal distributions, which gives the interpreter enough
flexibility with respect to our experimental synthetic data set.2

4.1 Evaluation on a simple synthetic inverse problem

First, we present a simple synthetic inverse problem for which a bimodal pre-
dictive distribution is adequate. The corresponding data set consists of 104

input-outcome pairs (xi, yi), where xi = u′2
i , u′

i is sampled from U(−1, 1),
yi = u′

i+0.25ϵi, and ϵi is sampled from N (0, 1). We train on it a density network
(DN) [6] as a simple model with a unimodal normal predictive distribution.

Figure 1 displays the PIT histogram of the DN and the interpretation of
the PIT histogram. The non-uniform PIT histogram reveals that the DN is
miscalibrated. The interpretation clearly shows that the cause of miscalibration
is that a unimodal predictive distribution is used to model a bimodal data-
generating distribution.

2For more details, see https://github.com/podondra/calibration.
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Year Prediction MSD (year) data set
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Fig. 2: PIT histograms (left) of DNs trained on the data sets from UCI Machine
Learning Repository and interpretations of those PIT histograms (right).

4.2 Evaluation on real-world data sets

We choose the Year Prediction MSD, Physicochemical Properties of Protein Ter-
tiary Structure, and Combined Cycle Power Plant (hereafter year, protein, and
power, respectively) data sets from UCI Machine Learning Repository, because
they are commonly used for the evaluation of predictive uncertainties (e.g. [4, 5]).

Figure 2 displays PIT histograms of DNs trained on the data sets and their
interpretations. In the case of the year data set, the PIT histogram of the DN is
not uniform, indicating miscalibration, and its cause is more easily identified with
the proposed decomposition. Our interpreter suggests that the normal predic-
tive distribution is insufficiently flexible in its shape to model the data-generating
distribution, and that it would be better to use a right-skewed predictive dis-
tribution. On the protein data set, the decomposition is similar to the one of
the year data set. However, on the power data set, we observe that the PIT
histogram of the DN exhibits some noise but is uniform. It is plausible that the
data-generating distribution deviates only slightly from a normal distribution.

Table 1 reiterates the well-known fact that dealing with causes of miscalibra-
tion leads to tangible improvements in the predictive performance. We deal with
the skewness by training MDNs that output mixtures of five normal distributions
for simplicity. In real applications, an appropriate simple predictive distribution
inferred from the interpretation should be used, not a complex mixture of many
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data set model mean NLL mean CRPS
year DN 3.373 ± 0.003 4.322 ± 0.013

MDN 3.094 ± 0.002 4.040 ± 0.007
protein DN 2.805 ± 0.039 2.342 ± 0.025

MDN 2.086 ± 0.017 1.940 ± 0.019
power DN 2.795 ± 0.018 2.175 ± 0.030

MDN 2.673 ± 0.023 2.093 ± 0.042

Table 1: Comparison of models in terms of the mean NLL and mean CRPS.

distributions. We report the mean NLL and mean CRPS as performance met-
rics, accompanied by standard errors that are estimated from splitting the data
sets into five train-test folds. The gap in predictive performance between DNs
and MDNs is large for the year and protein data sets. This gap is mainly due
to miscalibration when assuming a symmetric predictive distribution. For the
power data set, the gap is small because both models are almost calibrated.

5 Discussion

In probabilistic machine learning, we often focus solely on improving predictive
models with respect to metrics such as NLL or CRPS (e.g. with a Bayesian
network [5] or deep ensemble [4]), frequently at the cost of neglecting causes
of miscalibration (e.g. whether the family of predictive distributions is under-
specified). The proposed approach yields plots that essentially contain the same
information as PIT histograms or calibration plots, but in a form that makes
causes of miscalibration more obvious. By dealing with the causes of miscali-
bration, we get predictive models that are more reliable, and output calibrated
predictive distributions. In turn, the overall predictive performance of these
models is superior in terms of metrics such as the NLL and CRPS.
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