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Abstract. Brain-computer Interfaces (BCIs) have been developed to-
wards enhancing communication and control in individuals with motor dis-
abilities and assist in motor rehabilitation, where motor imagery (MI), the
mental visualization of limb movement, has been broadly explored. Tradi-
tionally, MI-based BClIs utilize electroencephalographic (EEG) recordings
to discriminate between limbs motor imagination. This involves applying
feature extraction and classification, primarily analyzing signals recorded
at the scalp. Despite the success of the traditional sensor space analysis,
recent studies have demonstrated that incorporating EEG source imag-
ing (ESI) has led to an improvement of the classification performance.
This work studies pipelines on both sensor and source space for classifying
upper limb MI. Here, we introduce the use of source average power for
the integration of ESI into MI-based BCIs. Our results suggest a signif-
icant accuracy improvement of 10% when applying source space analysis
with average power against traditional sensor space analysis. This demon-
strates that a shift from sensor space analysis to source space analysis can
be beneficial for MI classification.

Index Terms - EEG, BCI, Motor Imagery, EEG Source Imaging, Source
Reconstruction, Average Power.

1 Introduction

A Brain-Computer Interface (BCI) is a computer system which analyzes signals
from the brain, such as the electrical fields measured by Electroencephalography
(EEG), to use as communication between a human and a computer [1]. The
EEG technique has been broadly adopted in BCI systems due to its non-invasive
nature, affordability, portability, and high temporal resolution. These qualities
position EEG as a promising choice for the sensors required in a BCI system.
In a Motor Imagery (MI) based BCI, users imagine the kinesthetic sensa-
tion associated with moving specific limbs. The BCI system then analyzes the
recorded EEG signals, using them as the control input for the BCI. MI-based
BCT holds promise for various clinical applications, including reducing phantom
limb pain [2] and rehabilitating limb movement in ischemic stroke patients [3].
Before reaching classification, the EEG is usually pre-processed, by removing
unwanted artifacts, then filtered in frequencies of interest, and the features to
discriminate between different types of imagined movements are extracted.
Artifacts are often removed manually or semi-automatically with Indepen-
dent Component Analysis (ICA) [4]. ICA is considered the safest way to correct
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the measured EEG [5], however most traditional ICA algorithms are only suit-
able for offline use [6]. Band-pass filtering has been used to extract the relevant
MI-related frequencies in the so called the mu (x) band (8-12Hz) signals. This
frequency band is characterized for exhibiting a phenomenon called event-related
desynchronization (ERD), attenuation of the power, in the contralateral motor
cortex during the imagination of upper limb movement [7].

Multiple studies have reported the use of Common Spatial Patterns (CSP)
method for feature extraction [8, 9]. This method applies a spatial filter to
transform the original signal into two components which are optimal in the least
squares sense for discriminating two classes [10]. After CSP feature extraction,
classifiers like Linear Discriminant Analysis (LDA), Support Vector Machines
and Random Forest are very common choices [11].

The majority of the BCIs are based only on sensor space analysis [11]. At
the sensor level, the EEG is characterized by a low spatial resolution due to the
volume conduction problem [12]. This results in spatial mixing in the measured
EEG signal. EEG Source Imaging (ESI) methods can be used to estimate the
potentials generated on the brain cortex and provide an unmixed localization
and time-courses of the underlying sources. The integration of ESI methods
into MI-based BCIs has been scarcely reported, though some studies [9, 13, 14]
that have reported that source space analysis leads to an improvement of the
classification of MI.

In this study, we have evaluated traditional and novel pipelines in both sen-
sor and source spaces for classifying upper limb MI. Notably, we introduce the
use of average power over regions-of-interest (ROI) as key feature in the source
space, demonstrating a distinctive approach with ESI that surpasses conven-
tional analysis done only in sensor space.

2 Materials and Methods
2.1 Motor Imagery EEG Dataset

A pool of 10 subjects of the MI dataset from GigaScience database [15] was
used to evaluate the classification performance. The data was collected during
performance of hand MI imagery tasks with a sampling frequency of 512 Hz, and
using 64 Ag/AgCl active electrodes distributed over the scalp using the standard
10-10 montage. Each subject performed 100 or 120 trials of motor imagery from
each class; right and left MI. Each trial lasts 7s: 2s corresponds to a fixation
cross, 3s of MI task after a cue of right or left is presented, and 2s of blank
screen. The data was handled using MNE-python [16], and it was divided into
epochs of equal length between -2s and 5s around the MI cue.

2.2 Evaluation Pipelines

A total of 4 pipelines were evaluated in this study, 2 using only sensor space
analysis and 2 including source space analysis. The pipelines consist of 5 steps
after data collection: artifact removal using ICA; mu-band frequency filtering
using band-pass filter; analysis space definition, either using ESI or left as-is in
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the sensor space; feature extraction, either using CSP or average channel/source
power; and classification using LDA. The pipelines are illustrated in Fig. 1.
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Fig. 1: Analysis Pipelines from Raw EEG Data of the MI task to classification.
Numbers indicate the number of different combinations of methods result after
each step.

Artifact removal - ICA was performed individually on each subject, using
MNE-Python’s ICA tool with the Picard method [17]. Prior to ICA, all epochs
were high-pass filtered at 0.5Hz to remove baseline drift. Epochs marked as
“bad” in the dataset were removed, along with epochs with a peak-to-peak
value higher than 200uV. The transformed data was inspected visually to find
any independent components which contained common ocular artifacts. Lateral
eye movement and blinks were identified and excluded from the data.

Filtering - A zero-phase bandpass filter with cutoff frequencies 8-12Hz was
applied to the epochs in each pipeline to extract the information of the mu band.

Analysis space definition -The analysis space refers that the features were
extracted directly from the EEG channels (sensor space) or from the EST esti-
mation (source space). For the sensor space analysis, the complete set 64 EEG
channels were used. For the source space, the source activity was estimated
using the Dynamic Statistical Parametric Mapping (dSPM) [18] method using a
head model of 8196 sources, the epochs, and an ad-hoc diagonal covariance ma-
trix. The head model was computed using the boundary element model over the
so-called fsaverage subject’s magnetic resonance imaging (MRI) data, available
in MNE-python. A smaller subset of sources located in and around the motor
cortex was defined using Destrieux atlas [19] for automatic parcellation. This
subset is here referred to as the reduced source space and it contains sources from
the following ROIs: the paracentral lobule and sulcus, the subcentral gyrus, the
long insular gyrus, the post- and precentral gyrus, the central and postcentral
sulcus and the inferior and superior part of the precentral sulcus. The names
and locations of the selected ROIs are represented by the colored regions color
in Fig. 2. After selection the sources within the ROIs, the set of sources was
reduced to 1251.

Feature extraction - CSP was applied in the reduced source space and the
sensor space, in the interval ¢ € [0.5,3]s. For each vertex or channel j, the

2
average power p/ was calculated using p’ = % Yoy |=] ‘ , where ] is the -

th sample in the interval ¢t € [0.5,3]s and was used as the feature vector for
classification. Principal component analysis (PCA) was used in conjunction
with both feature extraction methods to reduce computational load, reduce the
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curse of dimensionality.

Classification - This step was performed using LDA classifier. 20% of the
epochs from each subject were kept aside as a test set. The remaining epochs
were used for 5-fold stratified cross-validation with a 80-20% training-validation
split, which was used for finding the optimal number of principal components.

Statistical analysis - The classification means were bootstrapped and com-
pared using a pairwise Dunn’s test [20].

M Precrecentral sulcus

m Precentral gyrus

= Central sulcus

m Postcentral gyrus

m Postcentral sulcus

™ Paracentral lobule and sulcus

Front

Fig. 2: Top view of the selected ROIs (colored regions) around the motor and
sensory cortex.

3 Results and Discussion

The classification accuracy from the pipelines is summarized in Fig. 3, which
illustrates the individual and mean test accuracy for each classification pipeline.
Overall the best average classification accuracy is 80.1%, which was achieved us-
ing average power in the source space as features, followed by CSP in source and
sensor space both with 70.3%, and average power in sensor space with 70.0%.
Interestingly, the average accuracy significantly increases by approximately 10%
when going from the average power in the sensor space to the source space,
similarly when comparing against CSP in sensor and source spaces. When in-
specting subject by subject, it is noticeable that for most of the subjects the
best accuracy obtained was when using ESI in the pipeline.
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Fig. 3: Test set classification accuracy of each pipeline. Left: Individual accu-
racy. Right: Group accuracy per pipeline. + represents the mean accuracy and
* represents statistical significance p < 0.05 (Bootstrapping and Dunn’s test).

The results indicate that higher classification can be achieved when involving
ESI and applying feature extraction over the source space, where using the
reduced source space gave significantly higher classification accuracy than the
sensor space when using average power as feature. The results are in line with the
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findings in [9], where similar pipelines ICA, Band-pass, CSP, and sensor space
or source space based on identified activation regions. In that study ESI was
computed with weighted minimum norm estimation (wMNE), and the evaluation
was performed over a pool of 10 subjects of the same dataset used here. The
study presented an average classification accuracy for MI of 74.0% and 79.2% for
sensor and source spaces, respectively. Here, using an ROIs approach instead of
activation regions and ESI with dSPM, the best accuracy considering the closest
pipelines were 70.3% with both sensor and reduced source space. However, when
varying the pipeline including average power on the source space, the accuracy
increased up to 80.3%.

In this work we introduce the average power as feature for MI classification.
The use of the average power as feature has improved significantly the classifica-
tion accuracy in the source space when comparing with CSP. While not tested
in this study, other algorithms could have been used for ESI, as algorithms dif-
fer in assumptions and approaches when estimating the source activity [21, 22],
it is therefore interesting to investigate ESI algorithms’ influence in future re-
search. Here the ROIs were defined a priori for source space and the complete
set of electrodes was used in the sensor space, optimization [23, 24] of sensor
and source space should be explored in future studies to determine the most
influential ROIs and sensors in combination with the average power.

4 Conclusion

In conclusion, the results presented in this work suggest that the source space can
provide suitable information that allows to achieve higher classification accuracy
on MI classification when compared to the sensor space. We have introduced
the feature of average power on source space using ESI, being a key element for
the accuracy increase. To the best of our knowledge this has not been used as a
feature when combined with ESI.
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