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Abstract. In the domain of Temporal Knowledge Graph Completion,
existing models often struggle with efficiently capturing the intricate tem-
poral dynamics and interactions within knowledge graphs. To address
these challenges, this paper introduces T-WinG, a novel approach that in-
corporates the Swin Transformer architecture, renowned for its efficacy in
hierarchical representation learning. By integrating SPLIME’s preprocess-
ing techniques and refining the Swin Transformer’s token mixer, T-WinG
substantially improves performance. Specifically, our model demonstrates
a performance improvement of up to 20% in accuracy metrics such as Mean
Reciprocal Rank (MRR) and Hits@K, across four benchmark datasets
compared to the best-performing baseline models. These results not only
underscore T-WinG’s ability to handle dynamic temporal data but also
highlight its potential to address the pressing needs of real-world applica-
tions requiring accurate and timely insights from knowledge graphs.

1 Introduction

The advent of knowledge graphs (KGs) has significantly transformed how data
is structured and utilized across various domains, providing a framework that
mimics human knowledge organization. However, the static nature of conven-
tional knowledge graphs limits their utility in applications where relationships
between entities evolve over time.

Temporal Knowledge Graphs (TKGs) address this limitation by integrating
temporal dimensions into the graph structure, thus allowing the representation
of how relationships between entities evolve over time. Recognizing the dynamic
nature of relationships and entities in KGs, this research focuses on Temporal
Knowledge Graph Completion (TKGC). This approach not only addresses static
relationships but also how these relationships evolve over time, providing a more
comprehensive and up-to-date model of the data.

Despite these developments, several challenges remain. One major issue is the
scalability of these models to handle very large graphs while maintaining efficient
computation. Furthermore, there is often a trade-off between the complexity of
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a model and its interpretability, with more complex models providing better
performance at the cost of reduced transparency.

The main contributions of this study are summarized as follows:

• We introduce T-WinG, a novel temporal knowledge graph completion
model inspired by the Swin Transformer framework. This model adeptly
incorporates SPLIME’s pre-processing techniques, ensuring seamless inte-
gration with the proposed architectural design.

• A refined version of the Swin Transformer’s token mixer is presented,
specifically tailored to enhance compatibility with data from TKG datasets.

• Through experimentation on three benchmark datasets for TKGs, our re-
sults demonstrate that T-WinG consistently outperforms established base-
line models across a broad array of metrics, underscoring its effectiveness.

2 Related work

In the expanding field of TKGC, incorporating temporal dynamics into tradi-
tional static models has catalyzed a significant transformation in how we under-
stand and predict relationships over time. Among TKGC models, TTransE [1]
extend traditional methods by treating time as a relational component, capturing
shifts in relationships over time. In contrast, bilinear models like TA-DistMult[2]
and HyTE [3] use time-specific embeddings for each relation, providing a robust
framework to capture complex interactions across different times but at the risk
of overfitting due to increased model complexity. TIMEPLEX [4] analyze inter-
actions across different times by treating each time slice as a separate layer in a
multiplex network, this approach demands substantial memory and careful pa-
rameter tuning. Similarly, TeRo [5] integrate tensor decomposition with RNNs
to capture both the static structure and dynamic changes, though these models
are computationally intensive.

Predictive models like ATiSE [6], which use time series analysis with entity
embeddings, excel in forecasting future interactions based on historical trends.
Their effectiveness, however, is contingent on the quality of historical data.
Rule-learning models like TILP [7] capture temporal logical rules from the data.
Policy-based models like MPNet [8] propose a creative direction integrating re-
inforcement learning in their approach. Lastly, approaches like SPLIME [9] and
EvoKG [10] split the embedding space into multiple subspaces to analyze tem-
poral dynamics at various granularities, offering detailed multi-scale analysis but
introducing complexity in managing multiple temporal dimensions.

To address these challenges, a promising direction is to enhance the mech-
anisms that process and prioritize temporal information, making temporal dy-
namics integral to understanding the graph’s evolution. Developing a refined
token mixer could capture temporal relationships more effectively, adjusting dy-
namically to the data’s temporal scope and scale. This refined focus promises
to bridge the gap between traditional and temporal graph analysis techniques.
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Fig. 1: Overall architecture of the T-WinG model

3 Proposed method

3.1 Model architecture

An overview of our proposed model is presented in Fig. 1. Utilizing the
MetaFormer [11] architecture, which is widely applied in computer vision as
Vision Transformers, we propose a new model for solving the knowledge graph
completion problem. Our model is designed to capture local features, inspired
by the non-overlapping windowing technique from Swin Transformer [12].

The proposed method consists of four stages, each containing a group of
WinG blocks. These blocks are composed of layers that compute Window-based
Multi-head Self-Attention (W-MSA) and a Patch Embedding layer that reduces
the resolution of representations. Since the embeddings are downsampled by
half after each stage, our proposed model has a hierarchical architecture, which
allows it to run faster. Details of a WinG block are illustrated in Fig. 1.

Time-dependant relation: Semantically, the time in each quadruple rep-
resents when the event occurred (which can take place over a period of time, not
just at a single moment). Therefore, we need to transform the pair of relation
and time (r, t) into a time-dependent relation called ra. This transformation cre-
ates a problem, as time-dependent relations can overlap, leading to unnecessary
redundancy. We use an approach proposed by Radstok et al. [9] to generate
time-dependent relations optimally.

Query embeddings: Since the proposed model uses a backbone designed
for images, we need to convert the embeddings of entities and relationships into
a 2-dimensional matrix representation to match the format. We use a linear
layer for the transformation, with weights learned during the training process to
align the transformation with the data. All components in the query are then
stacked together and treated as channels in an image, enabling the model to
capture interactions between entities and relations.

The transformation function can be formalized as follows:

q = Φs[φ(es), φ(er)], (1)

where φ(es) = esWs + bs, φ(er) = erWr + br, and Φs is the stacking operator.
Window-based Multi-head Self-Attention (W-MSA): We compute

MSA within local windows instead of the entire image. The windows are con-

395

ESANN 2024 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence and 
Machine Learning.  Bruges (Belgium) and online event, 9-11 October 2024, i6doc.com publ., ISBN 978-2-87587-090-2. 
Available from http://www.i6doc.com/en/.  



Model
WIKIDATA12K YAGO11K

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10
HyTE .253 .147 – .483 .136 .033 – .298
TTransE .172 .096 .184 .329 .108 .020 .150 .251
TA-DistMult .218 .122 .232 .447 .161 .103 .171 .292
TNTComplEx .301 .197 – .507 .180 .110 – .313
DE-SimplE .253 .147 – .491 .151 .088 – .267
TIMEPLEX .334 .228 – .532 .236 .169 – .367
TeRo .299 .198 .329 .507 .187 .121 .197 .319
ATiSE .280 .175 .317 .481 .170 .110 .171 .288
SPLIME .358 .222 .433 .610 .214 .065 .299 .458

T-WinG (ours) .426 .340 .471 .594 .279 .216 .294 .413

Table 1: Results on WIKIDATA12K and YAGO11K datasets

structed in a non-overlapping manner to avoid duplicated attention. The use of
W-MSA is beneficial when embeddings become larger, as it remains computa-
tionally feasible, as mentioned by Liu et al. [12]. We do not use shifted window
partitioning methods since they negatively impacted the model’s performance.

WinG block: Each WinG block has two main components: W-MSA and
Channel MLP, preceded by a Group Norm layer. Our model has a hierarchical
architecture with multiple stages, and going through these stages can lead to
the loss of important data in the later stages. To address this problem, we use
two skip connections to retain features across stages.

Scoring function: The results after passing through all four stages will be
mapped to the embedding space using a linear transformation, which is then
used to compute a score indicating whether the candidate object fits the fact or
not. The scoring function can be described as follows:

ψ(s, r, o) = f(WinG(q))W + b, (2)

where q is the query containing a subject and a time-dependent relation, f is an
activation function (we use ReLU), W and b are the weights and bias vector for
projecting the results into the embedding space, and WinG(.) are WinG blocks.

Loss function: We take the logits from the scoring function, apply a sigmoid
function, and then calculate the loss using Binary Cross Entropy (BCE). We also
apply label smoothing to the ground truth to make the model more robust.

4 Experiments

We conducted our experiments on three widely used benchmark datasets: WIKI-
DATA12K, YAGO11K [13], and ICEWS14 [2]. WIKIDATA12K and YAGO11K
both include time periods in their facts, whereas ICEWS14 does not. We op-
timized our model by maximizing MRR, with an embedding dimension of 400.
The learning rate varies for specific datasets (0.0001 for WIKIDATA12K and
ICEWS14, and 0.001 for YAGO11K), and the label smoothing rate is set to 0.1.

The results of HyTE, DE-SimplE, and TNTComplEx are based on Jain et
al. [4], while TTransE and TA-DistMult are adopted from TeRo [5]. The results
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Model
ICEWS14

MRR H@1 H@3 H@10
HyTE .297 .108 .416 .601

TTransE .255 .074 – .601

SPLIME .213 .047 .294 .544
T-WinG (ours) .406 .318 .450 .571

Table 2: Results on ICEWS14 dataset

Fig. 2: Learning curves of our proposed T-WinG model

of other models are from their original articles. Tables 1 and 2 show detailed
comparison results between our model and the baselines. Our model outperforms
the baseline models on the MRR and Hits@1 metrics.

We want to emphasize that, despite using the same data transformation as
SPLIME, our model is superior, thanks to the proposed architecture. Specifi-
cally, our model outperforms SPLIME by 90.6% on the ICEWS14 dataset, based
on the MRR. Notably, in terms of Hits@1, our model performs six times better
than SPLIME on the ICEWS14 dataset. On other datasets, such as WIKI-
DATA12K and YAGO11K, our model also provides improvements of 18.9% and
30.4%, respectively, compared to SPLIME, based on the MRR metric.

Fig. 2 shows that our model learns very quickly in the first 25 epochs, then
gradually approaches convergence, but without significant performance gains.
On datasets that contain time periods, later epochs show more performance
growth than on datasets that only contain facts at a single point in time. This
means that with simpler temporal patterns, our model learns even faster. This
proves that our model is highly sensitive to temporal features and relationships,
quickly capturing such information, which demonstrates the model’s scalability.
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5 Conclusions

Throughout this paper, we have demonstrated the capabilities of T-WinG, a
novel model designed to advance the state-of-the-art in Temporal Knowledge
Graph Completion. By innovatively applying the Swin Transformer framework
and optimizing the token mixer block, T-WinG captures temporal dependencies
with greater accuracy than traditional models, highlighting the effectiveness of
the windowing technique. Future work will focus on enhancing scalability and
exploring the integration of additional dynamic features to further improve the
predictive performance of knowledge graph completion tasks.
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