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Abstract. Explainable AI models and methods have seen a rise in inter-
est in recent years as a reaction to the widespread use of neural networks
and similar black-box models in machine learning. In this project, we
combine explainable, prototype-based systems and neural networks in an
effort to benefit from both approaches. Specifically, we employ General-
ized Matrix Relevance Learning Vector Quantization in combination with
autoencoder networks. This allows us to perform automated non-linear
feature extraction from high-dimensional inputs before feeding them into
LVQ for classification. Moreover, the approach enables the mapping of the
low-dimensional representatives and relevances back to the original feature
space for visual inspection and interpretation.

1 Introduction

In recent decades, there have been many rapid developments in the area of neu-
ral networks [1]. They show state-of-the-art performance in various applications,
including classification, segmentation, and detection. However, a major draw-
back is that they often are black-box systems. Frequently, their inner workings
cannot be interpreted by humans easily, and it is in general difficult to obtain
insight into what affects the actual decisions of a given system. Thus, there is an
increasing interest in explainable models and algorithms [2]. In some cases, the
ability to properly explain why exactly an intelligent system behaved the way it
did is more important than how accurate or fast it is.

Learning Vector Quantization (LVQ) [3] constitutes a family of intuitive, un-
derstandable algorithms. It addresses classification tasks and offers interpretabil-
ity by identifying prototypes. Because prototypes are defined in the same space
as the data presented, they can be interpreted and compared directly with indi-
vidual data points. One or several prototypes represent each class, and a given
input is classified according to its distances from all prototypes.

Applying LVQ to very high-dimensional data, e.g., images, can be challenging
and often requires dimensional reduction as a pre-processing step. In previous
work, convolutional neural networks (CNNs) [4] or the encoder of an autoen-
coder (AE) [5] have been combined with LVQ with great success, but with the
drawback of losing a degree of interpretability.

Here, we propose to combine a variant of LVQ, Generalized Matrix Relevance
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Fig. 1: Architecture of the autoencoder, redrawn after [11] and adapted.

LVQ (GMLVQ1) [6], with custom convolutional auto-encoders (CAE). The GM-
LVQ classifier is trained and operates in the latent space. The CAE allows the
prototypes to be mapped back to the original high-dim. feature space.

Previous work with similar independent ideas [7] combines a Neural Net-
work with an AE and a custom prototype layer. However, that solution is less
transparent than our method using GMLVQ.

2 Methods

All experiments were carried out using MATLAB r2023a [8] and its Deep Learn-
ing toolbox. For GMLVQ training, we used the No-nonsense beginner’s GMLVQ
toolbox [9] with default parameters apart from the number of total steps. We
performed part of the experiments on the Hábrók HPC cluster of the University
of Groningen. The MNIST dataset [10] of handwritten digits serves as a testbed
to evaluate and illustrate the suggested method.

Autoencoder architecture and training: We built an autoencoder with con-
volutional layers based on the architecture proposed in [11]. Because the Deep
Learning toolbox does not support unpooling layers, we replaced them with
transposed convolution layers that serve the same purpose. We also added a
hyperbolic tangent layer at the end of the stack. The final architecture is pre-
sented in Fig. 1. For training, we use the ADAM optimizer [12] with an initial
learning rate of 10−4 and otherwise default parameters. The pixel-wise Mean
Squared Error (MSE) between the reconstructed image and the original is used
as the loss function.

Fusion of GMLVQ and CAE: The core idea is combining GMLVQ with CAE
to classify a high-dimensional dataset and preserve interpretability simultane-
ously. Specifically, we train the CAE described above on the MNIST dataset
with 28 × 28 = 784 input dimensions. Then we isolate the encoder part of the
network. We use the activations in the latent space as low-level representations
of the input images and train the GMLVQ algorithm in this low-dimensional

1GMLVQ is more powerful and versatile than vanilla LVQ due to a generalized cost function
and a feature scaling relevance matrix, see [6].
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space. After training is complete, we obtain prototypes and pass them through
the decoder, which allows us to project them back to the original feature space
and display them as images again. The process of classifying a new image in-
volves encoding it using the encoder part of the autoencoder, finding the closest
prototype based on the metric defined by the relevance matrix, and assigning
the corresponding label to the image.

One of the benefits of the scheme is the lower computational cost for the
calculation of distances between datapoints and prototypes due to the reduced
dimensionality. By design, CAE aim to capture the most salient features while
eliminating unimportant ones that could also harm the performance of the clas-
sifier. Another key aspect of this method is interpretability of the prototypes
obtained. As mentioned above, we can use the decoder to map the prototypes
back to the original feature space, display them as images, and visually inspect
how well they represent their classes.

The decoder can also be used to obtain information about the relevance
matrix. The relevance matrix is expressed as Λ =

∑N

j=1
λjuju

⊤

j with non-
negative eigenvalues λj and eigenvectors uj whose dimensionality matches the
latent space of the CAE. In two-class problems it is typically dominated by
the leading eigenvector with λ1 ≈ 1, see e.g., [13]. Hence, we only project the
principal eigenvector back to the image space for visual inspection.

Experimental Configurations: The autoencoder was trained for 20-30 epochs
for all experiments. The latent sizeN varied between experiments, chosen empir-
ically by selecting the smallest size that resulted in an acceptable CAE reproduc-
tion loss. The GMLVQ classifier was trained using the default hyperparameters
defined in the toolbox [9] for 30 batch gradient steps. For each experiment, we
trained the system a total of 10 times and used the average metrics for validation
purposes. We did not attempt to fine-tune the hyperparameters of the algorithm
since it was not the focus of this proof-of-concept study.

Performance Criteria: We evaluated the suggested method both quantita-
tively and qualitatively. Specifically for binary classification problems, we used
the AUROC [14] for evaluation. In addition, we evaluated the method on the
basis of the interpretability of the decoded prototypes.

3 Results and Discussion

In this section, we present the experiments performed mainly in an exploratory
manner, as well as the corresponding results. We also discuss our findings and
their significance.

One digit per class: We trained the classifier to separate (a) handwritten ones
from zeros and (b) twos from threes. Here, the encoder reduced the number of
features to N = 5. We report the accuracies and AUROC in Table 1 and present
decoded representations of the prototypes obtained in Figure 2.

We observe that the algorithm yields very plausible representations of the
classes in image space. It also achieved very good classification performance as
expected in this relatively simple and limited experiment.
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Classification Accuracy AUROC
0/1 0.995 0.999
2/3 0.949 0.988

Table 1: Accuracy and AUROC for binary tasks, denoted in the form i/j, where
i and j are the two digits between which the classifier has to distinguish.

(a) 0/1 classification (b) 2/3 classification

Fig. 2: Two-class problems with one digit per class. Decoded prototypes are
shown as images.

Multiple digits per class: As examples of slightly more complex classification
tasks we considered the grouping of multiple digits into classes. In a first setting,
we grouped digits zero and one in a single class while the second comprises twos
and threes. In the following we refer to this problem as {0, 1}/{2, 3}. Next we
considered classes comprising visually similar pairs of digits, for instance the
discrimination of {3, 8}/{1, 7}.

In both cases we performed experiments with one prototype and, alterna-
tively, two prototypes per class. Here, the bottleneck dimension was N = 10.
Table 2 displays the achieved accuracies and AUROC, while in Fig. 3 we present
the obtained decoded prototypes. The performance of the classifier does not
change significantly upon increasing the number of prototypes, but it appears to
be affected by the specific choice of digits. Due to the higher in-class similarity,
groups {3, 8} and {1, 7} were separated slightly better than {0, 1} and {2, 3}.

Obviously, the outcome in terms of the decoded prototypes is strongly af-
fected by allowing more representatives per class. As shown in Fig. 3, single
prototypes resemble a superposition of the grouped digits. Systems with two
prototypes per class do resolve and represent the individual digits, although the
corresponding label information was not available in the training.

Prototype difference and the principal eigenvector: Intuitively, the eigenvec-

(a) One prototype per class (b) Two prototypes per class

Fig. 3: Two-class problems with two digits per class. Decoded prototypes for
grouped classes {0, 1} and {2, 3} are shown and interpreted as images.
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task prototypes Acc. AUROC prototypes Acc. AUROC

{0,1} / {2,3} 1 per class 0.915 0.972 2 per class 0.929 0.982
{1,7} / {3,8} 1 per class 0.940 0.976 2 per class 0.939 0.989

Table 2: Accuracies (Acc.) and AUROC for grouped classes

(a) (b) (c) (d)

Fig. 4: Visualization of the decoded eigenvectors (a and c) and the difference
between the two prototypes (b and d) for the experiments 0/1 and 4/5.

tors of the relevance matrix in GMLVQ should capture the directions in which the
classes differ the most. We compared the principal eigenvector with the pixel-
wise difference between the two prototypes of the binary classification tasks.
Specifically, we decoded the principal eigenvector of the relevance matrix and
interpreted it as an image. Results were inspected visually and in terms of the
cosine similarity. We report our findings in Table 3 and in Figure 4 where we
show some examples for illustration purposes. We see high similarity scores for
most cases, as one would generally expect. However, in a couple of tasks, the
measure is significantly lower; see the experiment with digits four and five. This
effect may correlate with the lower accuracy obtained for these tasks, which will
be investigated more thoroughly.

Experiment 0/1 2/3 4/5 6/7 {0,1}/{2,3} {1,7}/{3,8}
Cos. Sim. 0.965 0.864 0.539 0.792 0.943 0.807

Table 3: Cosine similarity between decoded eigenvector and prototype difference

4 Conclusion and Future Work

In this project we showcased our proposed model of combining GMLVQ with
CAE as a way to enable automatic feature extraction from high-dimensional
data, while at the same time creating a pathway in the opposite direction, from
the low-dimensional representation back to the original feature space. With
these tools, we are able to interpret the prototypes that were trained in the
latent space as images again, giving this approach the benefit of explainability.

We do not attempt to compete with the state-of-the-art models in the space
of classification, but based on the results, we make the case that the method
shows promise and, with further fine-tuning, could be used to a satisfactory
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degree if properties like explainability and prototype-based learning are desired.
Aside from performance evaluation, these experiments allowed us to examine
some properties of the resulting models, most notably the visualization of the
eigenvectors of the relevance matrix.

Future Work: Forthcoming studies will address the benchmarking of the
method on various established datasets for classification and comparison with
other existing models. This will require the fine-tuning of a relatively large num-
ber of hyperparameters, but it should provide better insights into the strengths
of the method and its potential for real-world applications. Another topic that
deserves further attention is the relationship between distances in the encoded
space and after decoding.
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