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Université catholique de Louvain - ICTEAM institute
B-1348 Louvain-la-Neuve - Belgium

Abstract. We consider the classical gradient method with constant
stepsizes where some error is introduced in the computation of each gra-
dient. More specifically, we assume relative inexactness, in the sense that
the norm of the difference between the true gradient and its approximate
value is bounded by a certain fraction of the gradient norm. We estab-
lish a sublinear convergence rate for this inexact method when applied to
smooth convex functions, and illustrate on a logistic regression example.

1 Introduction

Inexact gradient methods. First-order methods, and specifically gradient
methods, are widely used to solve large-scale machine learning, due to their
low computational cost par iteration and their relatively favourable convergence
properties, both in theory and in practice [8].

In this paper, we consider one of the most prominent first-order methods,
namely the gradient method with constant stepsize. Our goal is to study how
its convergence is affected when the gradient that is used at each iteration is
computed inexactly. This situation is encountered in a large variety of situ-
ations, such as the use of floating point computations with limited accuracy,
dependence on data that is only known approximately, or more generally the
time-accuracy tradeoff that is almost always present when the objective func-
tion (and its gradient) is obtained through another iterative procedure (e.g. a
simulation or another optimization process)1.

First-order methods relying on an inexact gradient have been studied before,
using several distinct notions of inexactness. The approximate gradient intro-
duced in [2] is assumed to differ from the true gradient by some error whose
norm is bounded. In [4] another notion of inexact gradient is developed, based
on the maximal error incurred by the corresponding quadratic upper bound. In
these two cases, the approximation error is not directly related to the scale of
the gradient, i.e. error is measured in an absolute manner.

In this work, we focus on a relative notion of inexactness, where the norm of
the difference between the true gradient and its approximate value is bounded by
a certain fraction of the gradient norm. This notion was introduced [3], and used
to analyze the effect of inexactness when dealing with smooth, strongly convex
functions. In this work, we extend this analysis to smooth convex functions

1Stochasticity may be viewed as another source of inexactness, but we limit the scope of
this work to deterministic methods
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in the absence of strong convexity. More specifically, we will provide a tight
convergence analysis of the following inexact gradient method:

Algorithm 1 Inexact Gradient method with constant (normalized) step size h

1: Given an L-smooth convex function f , a starting iterate x0 and a stepsize h
2: k ← 0
3: while k < max iterations do
4: Let dk be an approximate gradient with δ relative inexactness, i.e.

∥dk −∇f(xk)∥ ≤ δ∥∇f(xk)∥ (1)

5: Compute the next iterate as xk+1 = xk − h
Ldk

6: k ← k + 1
7: end while

Convergence rates on smooth convex functions. In the case of strongly
convex functions, it was proved in [3, Theorem 5.3] that, when applied to an
L-smooth and µ-strongly convex objective (with µ > 0), the above gradient
method with constant stepsize h and inexactness δ < 2µ

L+µ converges linearly
according to ∥∇f(x1)∥ ≤

(
1− (1− δ) µLh

)
∥∇f(x0)∥,

for h sufficiently small, and that this rate is tight. However, when the function
becomes merely convex (µ → 0), this rate becomes ineffective as the constant
tends to one. One must instead consider a different measure for the initial iterate
x0, such as its accuracy. In this paper we will prove results of the following type

1
L∥∇f(xN )∥2 ≤ τN

(
f(x0)− f(x∗)

)
,

where constant τN describes the rate of convergence after N iterations. In the
exact case (δ = 0), it is well-known that the convergence of τN for smooth convex
functions is of order O( 1

N ). More precisely, the following tight rate can be found
in [9, Theorem 2.1]:

Theorem 1.1. Algorithm 1 applied to a convex L-smooth function with a con-
stant stepsize h ∈ [0; 3

2 ] and an exact gradient (δ = 0), started from iterate x0,
generates iterates satisfying

1
L∥∇f(xN )∥2 ≤ f(x0)− f(x∗)

Nh+ 1
2

The main result in this paper is Theorem 2.3, which extends the above to situ-
ations where a gradient with relative inexactness is used.

Performance estimation. The two tight convergence rates described above
were obtained using the performance estimation framework, as introduced in
[5] and further developed in [10], which aims at computing the worst-case con-
vergence rate of some optimization method as the solution of an optimization
problem itself. More precisely, the convergence rate τN after N iterations of a
given algorithm A over a given class of objective functions F is equal to the
optimal value of the following Performance Estimation Problem (PEP) which
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can be formulated (with set I = {0, 1, · · · , N, ∗}) and solved numerically as a
semidefinite optimization problem (see e.g. [7]):

τN = max
{xi,gi,fi}i∈I

∥gN∥2

x1, . . . , xN are generated from x0 by algorithm A,
there exists an interpolating function f ∈ F such

that f(xi) = fi and ∇f(xi) = gi for all i ∈ I,

g∗ = 0, and f0 − f∗ ≤ 1.

In order to solve this problem, the condition that links the iterates, gradients and
function values (i.e. the variables {xi, gi, fi}i∈I) to some interpolating function
f ∈ F must be made explicit. For the class F we study, namely L-smooth
convex functions, it was shown in [10] that this is equivalent to requiring the
following inequality, called interpolation condition

Qij : fi ≥ fj + ⟨gj , xi − xj⟩+ 1
2L∥gj − gi∥2 (2)

to hold for every pair of indices i, j ∈ I. In addition to allowing to solve the
above problem computing the exact value of rate τN , one can also obtain a math-
ematical proof of that guarantee by combining those interpolation inequalities
with well-chosen multipliers (which can also be identified as dual variables [10]).

This PEP technique was used to find all results presented in this paper (both
theoretical and numerical). The concept of a gradient with δ relative inexact-
ness is obtained by adding (1) to the PEP, rewritten as the convex quadratic
constraint ∥di − gi∥2 ≤ δ2∥gi∥2 with quantities dis as additional variables.
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Fig. 1: Rate τn as a function of the number n of iterations. Inexactness δ = 0.1.

As an example, we plot on Figure 1 numerical results showing that the be-
haviour of a first-order method can be very different when relying on an inexact
gradient. On the left, the behaviour of the gradient method with constant step-
size h = 1 is barely modified. On the right the gradient method with the recently
proposed silver stepsize schedule [1], which accelerates convergence in the exact
case, deteriorates it heavily in the inexact case.

2 Convergence rate of constant stepsize inexact gradient

In this section, we establish the rate of convergence of the inexact gradient
method when using any constant stepsize h such that h ∈ [0; 3

2(1−δ) ]. We start

with the analysis of a single step.
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Theorem 2.1 (Rate of convergence of one iteration of inexact gradient descent).
Algorithm 1 applied to a convex L-smooth function with a constant stepsize h ∈
]0; 3

2(1+δ) ] and relative inexactness δ ∈]0; 1[, started from iterate x0, generates

x1 satisfying

1
L∥∇f(x1)∥2 ≤

f(x0)− f(x1)

h(1− δ)
and 1

L∥∇f(x1)∥2 ≤
f(x0)− f(x∗)
1
2 + h(1− δ)

.

Proof. The result will be proved without loss of generality for L = 1. Indeed, if
the function is multiplied by some factor c, then its gradient and the smoothness
constant L will also be multiplied by c. Thanks to the normalized stepsize h

L
in Algorithm 1, iterates will stay the same, hence their function values will be
multiplied by c, and the squared norms of their gradients by c2, which preserves
both displayed rates thanks to the 1

L factor in front of the left-hand sides.

To proceed, we introduce the notationD = d0−g0 and sum the two interpolation
conditions Q01 and Q10 with multipliers λ01 = 2 and λ10 = 1 to inequality
∥d0 − g0∥2 ≤ δ2∥ g0∥2 with multiplier h

2δ , which gives

f0−f1 ≥
(
3
2 − h− hδ

2

)
∥g0∥2+ 3

2∥g1∥
2+ h

2δ∥D∥
2+(2h−3)⟨g0, g1⟩+2h⟨g1, D⟩−h⟨g0, D⟩,

which can be rewritten as f0 − f1 ≥ (g0, g1, D)TM(g0, g1, D) with the following
matrix M :

M =

(3/2− h− hδ/2) (h− 3/2) −h/2
(h− 3/2) (3/2− h(1− δ)) h
−h/2 h h/2δ

+

0 0 0
0 h(1− δ) 0
0 0 0

 .

If we can show that first summand in matrix M , which we will call P , is positive
semidefinite, then it will imply that f0 − f1 ≥ h(1 − δ)∥g1∥2, which is the first

rate we want to prove. To do so, we partition P in four blocks as P =

(
A B
BT C

)
with

A =

(
3
2 − h− hδ

2 − 3
2 + h

− 3
2 + h 3

2 − h(1 + δ)

)
, B =

(−h
2
h

)
, C =

h

2δ
.

Since C is positive definite, matrix P is positive semidefinite if and only if the
Schur complement A−BC−1BT is also positive semidefinite, which is equal to(

3
2 − h− hδ

2 − 3
2 + h

− 3
2 + h 3

2 − h(1 + δ)

)
− 2δ

h

(
h2

4 −h2

2

−h2

2 h2

)
=
(
3
2 − h(1 + δ)

)( 1 −1
−1 1

)
.

This is clearly positive semidefinite if and only if 3
2 − h(1 + δ) ≥ 0, which is

guaranteed by the hypothesis h ≤ 3
2(1+δ) . To show the second part of the

theorem, we use another interpolation inequality (known as the descent lemma)

Q1∗ : f1 ≥ f∗ + ⟨g∗, f1 − f∗⟩+ 1
2∥g∗ − g1∥2 = f∗ +

1
2∥g1∥

2,

and add it to f0 − f1 ≥ h(1 − δ)∥g1∥2 to obtain the desired rate f0 − f1 ≥(
1
2 + h(1− δ)

)
∥g1∥2.
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Let us now show that these rates cannot be improved.

Theorem 2.2. Both rates proven in Theorem 2.1 are tight.

Proof. Again we consider the case L = 1 without loss of generality. The following
univariate function, often called Huber function, is 1-smooth

f(x) = 1√
h(1−δ)

|x| − 1
2h(1−δ) when |x| ≥ 1√

h(1−δ)
, otherwise f(x) =

1

2
x2.

Assuming that x0 ≥ 1√
h(1−δ)

, we have that ∇f(x) = 1√
h(1−δ)

. If we now choose

d0 = (1−δ)∇f(x0), which clearly satisfies the definition of δ inexactness, iterate
x1 will become x1 = x0−

√
h(1− δ). Now choosing x0 such that x1 = 1√

h(1−δ)
,

i.e. x0 =
√
h(1− δ)+ 1√

h(1−δ)
, it is straightforward to check that f(x0)−f(x1) =

1 and we have shown that ∥g1∥2 = f(x0)−f(x1)
h(1−δ) . The second rate can be checked

to be tight in a similar way, using the same f , x0, d0, x1 and f∗ = 0.

To conclude, we derive a convergence rate characterizing the behaviour of the
inexact gradient method after several iterations. We first note that, somehow
surprisingly, monotonicity of the gradient cannot be guaranteed for δ > 0, i.e.
∥gi+1∥2 ≤ ∥gi∥2 is not true in general for iterates generated by Algorithm 1.
However, a bound on the minimum norm among all gradients can still be derived.

Theorem 2.3. Algorithm 1 applied to a convex L-smooth function with a con-
stant stepsize h ∈]0; 3

2(1+δ) ] and relative inexactness δ ∈]0; 1[, started from iterate

x0, generates iterates satisfying

1
L min

k∈{1,··· ,N}
∥∇f(xk)∥2 ≤

f(x0)− f(x∗)
1
2 +Nh(1− δ)

.

Proof. Writing the first rate in Theorem 2.1 on consecutive iterates (xk, xk+1)
gives h(1− δ)∥∇f(xk+1)∥2 ≤ f(xk)− f(xk+1). Summing from k = 0 to N − 1,
and adding the descent lemma f(xN )− f(x∗) ≥ 1

2∥∇f(xN )∥2 as in the last step
in the proof of Theorem 2.1 gives, after telescoping the right-hand side

1
2∥∇f(xN )∥2 + h(1− δ)

∑N−1
k=0 ∥∇f(xk+1)∥2 ≤ f(x0)− f(x∗).

Using the fact that every squared gradient in the left-hand side is greater than
the one with the minimum value among them gives the sought inequality(

1
2 +Nh(1− δ)

)
min

k∈{1,··· ,N}
∥∇f(xk)∥2 ≤ f(x0)− f(x∗).

Hence Algorithm 1 will converge for any δ ∈]0; 1[, with nearly the same sublinear
convergence rate as in the exact case except for an extra (1− δ) factor.
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3 Numerical experiment

To conclude, we perform a numerical experiment to validate our theoretical find-
ings. Given some initial point, we apply one step of both the exact and inexact
gradient methods to minimize the objective of a logistic regression problem for
the standard iris dataset ([6]). For the latter method, we choose δ = 0.15 and,
as our focus is on worst-case analysis, we pick the worst possible direction satis-
fying the inexactness condition. More precisely, we add to the true gradient an
error term (with maximum norm) going opposite to the minimizer, i.e. add a
multiple of −(x0 − x∗). Figure 2 shows one example of the observed numerical
rates of convergence τ1 for some range of the stepsize parameter h. This con-
firms that convergence is slower with the inexact gradient, and that the optimal
stepsize for the inexact gradient is shorter than for the exact gradient (echoing 3

2
vs. 3

2(1+δ) ). However, as opposed to the theoretical worst-case, longer step sizes

notably affect inexact gradients more than exact ones, as seen when h increases.
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Fig. 2: Experimental rate of convergence τ1 = ∥g1∥2
f0−f1

after one iteration.
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[7] Baptiste Goujaud, Céline Moucer, François Glineur, Julien Hendrickx, Adrien Taylor,
and Aymeric Dieuleveut. PEPit: computer-assisted worst-case analyses of first-order
optimization methods in python. arXiv:2201.04040, 2022.

[8] Guanghui Lan. First-order and stochastic optimization methods for machine learning,
volume 1. Springer.

[9] Teodor Rotaru, François Glineur, and Panagiotis Patrinos. Exact worst-case convergence
rates of gradient descent: a complete analysis for all constant stepsizes over nonconvex
and convex functions. arXiv:2406.17506, 2024.

[10] Adrien B Taylor, Julien M Hendrickx, and François Glineur. Smooth strongly convex
interpolation and exact worst-case performance of first-order methods. Mathematical
Programming, 161:307–345, 2017.

130

ESANN 2024 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence and 
Machine Learning.  Bruges (Belgium) and online event, 9-11 October 2024, i6doc.com publ., ISBN 978-2-87587-090-2. 
Available from http://www.i6doc.com/en/.  


	PapersAndBack
	AllPapers
	Wednesday
	ES2024-171-3






