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Abstract. This paper presents an unsupervised and model-independent
concept drift detector based on quadtree spatial analysis (QTS). We used a
d-dimensional quadtree to map the feature space and tracked a univariate
curve that mimics the spatial behavior of the data stream. This curve
serves as a helpful visual tool for analyzing concept drifts. Drifts are
identified when there is a significant change in the current spatial mapping.
Experimental results show that the proposed outperformed well-known
drift detectors in terms of average precision and F1-score.

1 Introduction

IoT-connected devices and real-time sensors have significantly increased data
volume, posing challenges for machine learning, including constraints on storage
capacity and the problems inherent to non-stationary data streams.

In data stream literature, changes in data distribution over time due to evolv-
ing generator functions are called concept drifts, As new samples from different
distributions are introduced, machine learning models trained on historical data
tend to degrade. Therefore, a concept drift detection mechanism must update
the model based on the most recent data.

Regarding concept drift, approaches can be divided into supervised, semi-
supervised, and unsupervised detectors. Supervised detectors assume the avail-
ability of ground truth labels at the same time as arriving instances. However,
this may be unrealistic in real-world applications due to data acquisition failures
and latency. As a result, unsupervised alternatives for drift detection tasks have
been explored due to these limitations [1, 2].

Unsupervised detector methods must learn from the current raw data and
provide the basis to detect distribution changes in the input features. Some
detectors rely on data stream statistical properties of first and second order,
compute density clusters, and analyze their differences through time [3, 4]. While
others build models and track their behavior on newer and older data [5, 6, 7].
In any case, sliding windows and statistical tests are common.

This paper presents a new unsupervised drift detection method named QTS.
Even though the concept of monitoring data distribution in space is not new,
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QTS uses a quadtree to monitor data stream behavior in the mapping space.
This allows multivariate data to be analyzed as a univariate curve, providing
a visual tool for inspecting data stream changes. This is particularly useful for
applications where we don’t know the drift characteristics in advance (recurrence,
behavior, and velocity). Concept drifts are detected when significant changes
occur in the amount of mapped data. Experimental evaluation results show that
the proposed method has higher average precision and F'1-score than well-known
drift detectors on synthetic and real-world datasets.

2 Unsupervised Quadtree-based Drift Detector (QTS)

QTS analyzes multivariate data distributions from a univariate curve that re-
flects the spatial occupation of data over time. This is achieved by mapping
the data to a height-limited quadtree. Such mapping reduces the cost of storing
multivariate data since the streaming is summarized. It also creates a visual tool
for inspecting data stream changes. The algorithm for mapping streaming data
into a multidimensional quadtree is described in detail in our previous study [4].

The storage capacity of a quadtree depends on the height parameter h and
the dimension d. Since h is related to the number of recursive divisions, a
limit on this parameter can lead to multiple data points in a child hypercube,
breaking the rule of having only one data point per leaf node. To address this,
we summarize the data points by taking the mean feature vector of the data
points within each child hypercube [4]. The summarization process can be seen

in Fig. 1.
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Fig. 1: Half Moons with 500 samples (a) and Quadtree (h = 4) with 90 summa-
rized samples (b)

QTS uses a sliding window W to store the most recent data stream samples.
Once these samples are inserted into a quadtree, they are summarized, and the
amount of data resulting from the summarization is placed in a data structure
Sw- The occupancy of S, is defined as the amount of data occupying the sum-
marized quadtree leaf nodes. As a new sample arrives, the quadtree and the
occupancy value for the next S, are updated. This enables the creation of an
occupancy curve over time that reflects the data stream behavior in the map-
ping space. Fig. 2 shows the corresponding occupancy curve for the well-known
benchmark FElectricity dataset, which has 8 attributes and 45312 samples. It
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is possible to observe the behavior of occupancy over time showing fluctuations
within the same concept and a significant variation between different concepts.

(i) Most likely drift region
(ii) Stability region
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Fig. 2: Occupancy curve over time for Electricity dataset.

Upon the introduction of a new concept, the tree occupancy values change
until they stabilize around an average value (see Fig. 2). These values are stored
in a static reference window R,, and serve as a reference for the concept. De-
tecting a concept drift involves identifying significant differences in the quadtree
structure. This is done by monitoring the occupancy curve using two parallel
strategies, which can be triggered individually depending on variations in the
curve:

- this strategy checks whether the most recent occupancy values, stored in
Sw, have changed regarding the R,, reference values for a given concept. The ref-
erence mean (f g, ) and standard deviation (o gy, ) of occupancy can be computed
from the static window R,,. Likewise, a value representing the actual occupancy
can be achieved from the mean (pg,,) of the S,, values. Thus, inspired by the
Chebyshev inequality, a concept drift is alarmed when ||psw — fRw|| > 30 Rw-

- this strategy uses the first derivative of the occupancy curve in S, to iden-
tify a concept drift. A sliding window is set to keep track of the first derivative
of the occupancy (f'(Sy)). A drift occurs when the distance between mean
derivatives on more recent (S, rp) and older data (S,op) exceeds a threshold:
Hﬂf’(Sw)RD — 1f(Su)on H > 0/(Sy)op- As it can be observed, the recommended
threshold corresponds to one standard deviation with respect to the mean deriva-
tive for the oldest data.

The sizes of Ry, Sy, and W control the detection sensitivity of the QTS
method. Using a smaller window size increases detection sensitivity but also
raises the risk of false positives. Based on initial experiments, we recommend
a window size of 1000 samples for most cases. For the f’(S,,) we recommend
using the same size as R,,. The recent data used to estimate the average for
comparison with the derivative of old data must be at least 10% of the size of
the sliding window f’(Sy,).

Fig. 3 illustrates the QTS method in two main stages: (i) a sliding window
W stores the most recent data in the first step. A quadtree summarizes the data
from W, and the amount of data resulting from the summarization (occupancy)
is stored in S, (Fig. 3a); (ii) the S,, values are processed for drift detection.
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A derivative sliding window f’(S,,) is calculated on S,, data (Fig. 3b), and a
static reference window R, is kept at the beginning of each new concept (Fig.
3c). The pseudocode for QTS algorithm can be found in the following link?.
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Fig. 3: Overview of the QTS drift detection method.

3 Experiments and Results

To evaluate the effectiveness of the proposed method, QTS was compared with
three known unsupervised drift detection methods: D3 [2], OCDD [6], and
STUDD [7]. The experiments were performed over 9 synthetic datasets, 7 drawn
from MOA 2, and 4 real-world datasets, that have been commonly used in earlier
studies on concept drift [3].

The evaluation methodology uses the timestamps in which the drifts occurred
to measure the detectors’ ability to distinguish between true detection and false
alarms. As recommended in [8], we define a True Positive (TP) for every times-
tamp following a detection within a fixed delay range of 1000 timestamps after a
concept drift occurred and a False Negative (FN) for missing a detection for ev-
ery timestamp within the same delay range; a False Positive (FP) as a detection
outside this range or an extra detection in the range. Detection quality is then
evaluated by recall = #TP/(#TP + #FN), precision = #TP/(#TP + #FP),
and F1-score = 2 x (precision * recall) / (precision + recall) metrics.

Evaluation for real-world datasets involves a pipeline that integrates the drift
detector with a classification model to measure the accuracy metric over time.
The model used in all cases was a Random Forest Classifier with default parame-
ters, trained with an initial set of samples and updated whenever a concept drift
was detected. The process involves discarding the current classifier and training
a new model with a new set of samples. The methods are then compared using
two baseline models, with no integrated drift detectors: BL1 and BL2. In BL1,
the classifier is trained only once and is not updated further. In BL2, the classi-
fier is retrained after every K sample, where the value of K is modified for each
dataset so that the number of retraining matches the number of QTS detections.

Thttps://github.com/beraram/QTS-method
2available at: https://moa.cms.waikato.ac.nz/
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Table 1 shows the results achieved on the synthetic datasets: Recall, Preci-
sion, F1-score, #Detections and the amount of truly detected Drifts. The best
scores for each dataset are highlighted in bold. The QTS outperforms other
methods in most datasets, having the best averages for every metric. It detected
all the concept drifts with a high precision and a good F1-score.

Dataset Method Recall Precision F1-Score #Detections Drifts
QTS 0.8443 0.9978 0.9147 4 3/3

TOY STUDD 0 0 0 1 0/3
D3 0.396 0.9905 0.5658 4 2/3

OCDD 0 0 0 3 0/3

QTS 0.331 1 0.4974 1 1/1

RBF STUDD 0.28 1 0.4375 1 1/1
D3 0.899 1 0.9468 1 1/1

OCDD 0.305 0.7274 0.4298 7 1/1

QTS 0.228 1 0.3713 1 1/1

STUDD 0 0 0 0 0/1

SEA D3 0 0 0 0 0/1
OCDD 0.237 0.8976 0.375 4 1/1

QTS 0.994 1 0.997 1 1/1

STUDD 0 0 0 0 0/1

DS-RS D3 0.899 0.8727 0.9468 1 1/1
OCDD 0.869 0.8727 0.8709 15 1/1

QTS 0.861 1 0.9253 1 1/1

STUDD 0 0 0 0 0/1

DS-RS-G D3 0 0 0 0 0/1
OCDD 0.749 0.8734 0.8064 13 1/1

QTS 0.989 1 0.9945 1 1/1

STUDD 0 0 0 1 0/1

DS-HR D3 0 0 0 0 0/1
OCDD 0.6867 0.8734 0.7689 12 1/1

QTS 0.895 1 0.9446 1 1/1

STUDD 0.2851 1 0.4437 1 1/1

DS-HR-G D3 0 0 0 0 0/1
OCDD 0.537 0.8438 0.6563 12 1/1

QTS 0.999 1 0.9995 1 1/1

STUDD 0 0 0 0 0/1

DS-HS D3 0.899 0.8727 0.9468 1 1/1
OCDD 0.799 0.8717 0.8338 14 1/1

QTS 0.8372 0.9993 0.9111 3 1/1

STUDD 0.1747 1 0.2974 1 1/1

DS-SR-G D3 0 0 0 0 0/1
OCDD 0.7091 0.9938 0.8277 17 1/1

QTS 0.7754 0.9997 0.8395 1.5556 11/11

Average STUDD 0.0672 0.2727 0.1071 0.3636 3/11
& D3 0.3437 0.4151 0.3785 0.7778 5/11
OCDD 0.5435 0.7726 0.6188 10.7778 8/11

Table 1: Results of unsupervised drift detectors over the synthetic datasets.

Table 2 shows the accuracy results on the real-world datasets. As observed,
QTS performed well and was competitive with other unsupervised methods. In
all cases, QTS was better or equal to BL1 and outperformed BL2 in three of
four datasets. Additionally, QTS was better or equal to D3 in all datasets,
outperformed OCDD in three out of four datasets, and outperformed STUDD
in two datasets, with similar results in cases where it was worse.

4 Conclusions
This paper presented a novel unsupervised drift detector (QTS) that maps the

streaming data to a height-limited d-dimensional quadtree. Such mapping re-
duces the cost of storing multivariate data since the streaming is summarized;
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Dataset QTS STUDD D3 OCDD BL1 BL2
ELECTRICITY 0.7318 0.7394 0.6782 0.7100 0.6612 0.7034
WEATHER 0.7409 0.7413 0.7409 0.7235 0.7409 0.7358
AIRLINES 0.5958 0.5483 0.5565 0.5733 0.5490 0.5877
POSTURE 0.5291 0.5258 0.4631 0.5329 0.4620 0.5572
AVERAGE RANK 2.25 3 4.25 3.5 5 3

Table 2: Accuracy results over the real-world datasets.

it also creates a visual tool for inspecting data stream changes, which is par-
ticularly suitable for applications in which we do not know in advance the drift
behavior. Two strategies were proposed for identifying changes through the
Quadtree occupancy curve: one inspired by the Chebyshev inequality for de-
tecting slower changes and another using the occupancy’s mean derivative for
more subtle changes. Experimental results on synthetic and real data streams
indicated that QTS is more precise in detecting drifts than the other tested
methods.
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