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Abstract. Amyotrophic Lateral Sclerosis (ALS) is a fast-acting neurode-
generative disease, characterized by loss of muscle movement and hetero-
geneity in disease evolution. This poses a challenge in predicting the best
time for therapy administration. Here, we propose Deep Temporal Consen-
sus Clustering (DTCC), a stratification method to uncover patient groups
with similar disease progression. Using only the initial 6-month follow-up
period, DTCC uncovered five clusters that were evaluated in terms of dis-
ease evolution and time-to-event. For three critical events (non-invasive
ventilation, gastrostomy and death) the attained groups show distinct 10-
year progressions, validating the approach.

1 Introduction

Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease, character-
ized by a progressive degeneration of motor neurons. It leads to muscle atrophy
and paralysis, with the leading cause of death being respiratory failure. The
median life expectancy after the first symptoms ranges from 2 to 4 years [1].
However, 10-20% of patients have a slower disease progression and survival times
longer than 10 years [1], and others have a very steep progression and low life
expectancy. ALS has no cure and most therapeutic procedures are focused on
alleviating symptoms and improving quality of life at later stages of the disease.
Most common therapies include non-invasive ventilation (NIV) and percuta-
neous endoscopic gastrostomy (PEG). The first has been shown to increase life
expectancy, while the effect of the latter on survival is still an open subject [1, 2].

Clinical presentations of ALS can vary in affected areas and displayed symp-
toms, as well as disease progression speed and severity. This heterogeneity poses
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a challenge when understanding the disease’s stages and evolution, which are
essential factors for prognosis prediction and treatment administration, such as
whether a patient is eligible for NIV or PEG and when to start them. Therefore,
a proper stratification of ALS patients is crucial for understanding the disease
progression and developing insights into when critical events are reached.

While there have been several works on ALS patient stratification, they
mostly rely on clinical criteria (based on static data), statistical methods and
trajectory modelling [3]. However, the latter methods are based on a single
feature and, due to disease heterogeneity, lead to several dozens of trajectory
groups (e.g., [4]), which is unfeasible for clinical decision-making. Thus, while
ALS patient stratification based on temporal data can be challenging, it is still
under-explored but highly important for clinical practice.

This work aims to build a novel multivariate method for ALS patient strat-
ification, using deep learning techniques, that takes advantage of the temporal
evolution of patients’ records. Using the Lisbon ALS Clinic dataset, it uncov-
ers clinically relevant groups of patients, which show significant differences in
clinical features and in time-to-event analysis of critical endpoints.

2 Deep Temporal Consensus Clustering

The proposed Deep Temporal Consensus Clustering method (DTCC) was devel-
oped to capture the temporal dimension of patients’ records and use it to obtain
medically relevant groups. The approach is presented in Fig. 1 and is composed
of four main modules: (A) temporal autoencoder, (B) manifold learning, (C)
hierarchical clustering, and (D) consensus clustering, as detailed next.
(A) Temporal Autoencoder. Consider D = {p1, ..., pN}, a set of N patients
with follow-up, pi = {Xt, Xt+1, ...} (Xt is the set of features at time t). This
module learns a lower dimensionality space representation, Z = {p′1, ..., p′N},
by capturing the most relevant information from the data. Both encoder and
decoder consist of two Long-Short Term Memory (LSTM) layers, with tanh as
the activation function. However, the decoder has an additional time-distributed
dense layer at the end to match the original input shape. In the case of ALS
data, the LSTM layers of the encoder have sizes 16 and 8 (size of the latent
space), and the LSTM decoder layers have sizes 8 and 16. The autoencoder is
trained by minimizing the mean-squared error between the reconstructed D̂ and
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Fig. 1: Proposed stratification methodology.
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the original data D. Here, training uses 1000 epochs with the Adam optimizer.
(B) Manifold Learning. Uniform Manifold Approximation and Projection for
Dimension Reduction (UMAP) preserves the local and global structure of data
which potentiates the learning of an optimized, more clusterable embedding
manifold, improving the performance of clustering algorithms [5]. Here, it is
used to map the latent space Z to a new representation of data Y with the same
dimension, because the autoencoder already reduces the dimensionality of the
data, and further reduction could lead to loss of information. In the case of ALS
data, the parameter responsible for balancing local and global structure is set to
50, because with a lower number UMAP focuses on local structure, and a larger
number reflects the global structure.
(C) Hierarchical Clustering. An Agglomerative Hierarchical Clustering is
used to stratify the patients, considering Ward linkage and Euclidean distance
as the affinity metric. The number of clusters is set by inspecting the dendrogram
and computing the silhouette score. It leads to a partition P = {C1, ..., CK},
where Ci is the i-th cluster in the data partition, and K the number of clusters.
(D) Consensus Clustering. Different runs of the Temporal Autoencoder
can produce different data representations, which may lead to different clus-
tering partitions P. To take this into consideration, a clustering ensemble
P = {P1, ...,PM} is obtained by running modules (A) to (C) M times. Then, a
co-association matrix C [6] is computed by counting the number of times (nij)
two patients pi and pj are assigned to the same cluster, i.e., C(i, j) = nij/M .
Finally, a consensus partition P∗ is extracted by applying an agglomerative clus-
tering algorithm over the co-association matrix C. In the ALS data, the Ward
linkage with Euclidean distance is used and the number of clusters is obtained
by computing the silhouette score and the dendrogram inter-cluster distance.

3 ALS Data

The dataset is from the Lisbon ALS Clinic, which consists of Electronic Health
Records from ALS patients who have been regularly monitored (≈ every 3
months) from 1995 until May 2023. It includes 1677 patients with a set of static
features collected at first appointment (such as demographics, disease severity,
comorbidities, and others) and temporal features collected during follow-up eval-
uations (such as functional assessment with ALSFRS-R, and respiratory tests).
The ALSFRS-R is a clinically validated instrument for monitoring ALS pro-
gression. It is comprised of 12 questions to assess different affected domains [7]:
bulbar (Q1-Q3), upper limbs (Q4-Q5), trunk (Q6-Q7), lower limbs (Q8-Q9), and
respiratory (Q10-Q12). To stratify patients with DTCC, only the ALSFRS-R
(total score and subscores) and MiToS [8] were used, normalized between [−1, 1].

Since a patient may take some days or weeks to perform all prescribed exams
of the same appointment, it is relevant to be able to group all these into a single
patient snapshot. This is achieved by following [9], which uses an Agglomerative
Hierarchical Clustering algorithm, with the restriction that a snapshot cannot
have two observations of the same test.
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4 Experimental Results

4.1 Group Characterization

DTCC was applied to the Lisbon ALS Clinic dataset, by considering the func-
tional scores recorded in the first three appointments (initial assessment plus a
6-month follow-up period). Patients with fewer appointments were discarded,
yielding N = 945 patients. The stratification with the best silhouette score
(0.667) features five clusters (groups of patients). Their functional domain
scores, for the first six evaluations, are presented in Fig. 2. The clusters show
separation in affected functional domains and present varying levels of disease
severity. This contrasts with the literature [4], which focuses on trajectory mod-
eling, to find dozens of clusters, some associated to individual progressions.

Analyzing the attained clusters, group 1 (N = 192) has a purely motor disease
presentation and is the slowest-evolving group overall. The lower limbs and
trunk are the most affected domains in the observation period. Group 2 (N =
180) is also a pure motor group but with predominant upper limb and trunk
symptoms at the first appointment. However, it quickly worsens in all motor
domains. This group also begins to experience respiratory decline towards the
end of the observation window. Group 3 (N = 154) is predominantly motor at
the first appointment (with similar upper and lower limb scores), but quickly
develops both respiratory and bulbar symptoms. It is the group with the fastest
respiratory decline overall. Group 4 (N = 152) has a predominantly bulbar
presentation at the first three appointments (with only some respiratory decline),
but soon after that experiences generalized motor impairment. Group 5 (N =
267) has a fast and generalized disease progression, experiencing some level of
functional decline in all domains by the first appointment. Patients in this
group worsen in both bulbar and motor domains at similar rates, and exhibit
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Fig. 2: Disease progression of ALS patient groups obtained by DTCC, by func-
tional domain. Lower values of the scores correspond to the worsening of the
disease. Lines represent median values and shaded areas correspond to the 95%
confidence interval. Note that DTCC only uses the first 3 evaluations, corre-
sponding to the grey area in each plot.
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respiratory worsening between appointments 2 and 3.
Characterization in terms of demographic and clinical features, collected at

first appointment, was also performed through statistical analysis. Some differ-
ences were found in terms of age at onset, with groups 1 and 2 being slightly
younger (G1: 60yr, 95% CI [51.5:68.0], G2: 61yr, 95% CI [52.0:69.0]), having
predominant lower motor neuron involvement, (G1: 55%, G2: 53% of patients
in the groups), lower rates of cardiac disease (G1: 5% and G2: 7%) and dys-
lipidemia (G1: 26% and G2: 21%). The remaining groups are older (G3: 63yr,
G4: 65yr, G5: 65yr) and have more propensity for early-disease weight loss (G3:
24%, G4: 17%, G5: 24%) and for more comorbidities such as blood hyperten-
sion (G3: 38%, G4: 40%, G5: 37%). Group 4 is comprised of more females
than the remaining groups (G1: 43%, G2: 27%, G3: 30%, G4: 61%, G5: 54%),
which is consistent with bulbar involvement [1]. Group 5 presents comparing
rates of limb and bulbar onset (51% and 42%, respectively), which could not be
determined from the functional assessment only.

4.2 Time-to-event Analysis

To validate the obtained clusters, Kaplan-Meier estimators were fitted to each
patient group and compared to the baseline curve (Kaplan-Meier estimator of
the entire cohort), for three distinct events: NIV, PEG and death. The log-rank
test was used to test the difference between each group curve and the baseline
curve. Time-to-event curves are shown on a (up to) 10-year follow-up period.
Median time-to-event was analysed for each curve and presented along with the
95% confidence interval (95% CI).

Fig. 3 presents the Kaplan-Meier curves for the three critical events. Median
time to NIV is typically lower than to PEG, except in the bulbar group (G4)
where the need for both therapies arises at similar times. All group curves
report significant differences when compared to baseline (p-value ≤ 0.01), except
survival in G3 (p-value = 0.71).

The motor groups G1 and G2 have the longest expected survival at over 3
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Fig. 3: Kaplan-Meier curves for predicting (A) need for non-invasive ventilation
(NIV), (B) need for percutaneous endoscopic gastrostomy (PEG) and (C) death.
All stands for the baseline curve (i.e. full cohort).
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years, but subjects with predominant upper limb symptoms (G2) are expected
to need NIV and PEG considerably sooner. The other motor group (G3), has the
overall shortest times to NIV (≈ 6 months) and PEG (≈ 9 months). However,
median survival falls in line with the baseline (≈ 2.5 yr). The general group (G5)
has the shortest expected survival and should require NIV and PEG soon after
the third evaluation (≈ 6 months). Finally, the bulbar group (G4) has similar
times to NIV and PEG (≈ 1 yr), and median survival at 2 years.

From these results, we conclude that critical events occur at vastly different
times depending on the attained group. As such, stratification should be taken
into account when developing more complex prognosis prediction models.

5 Conclusions

A temporal multivariate stratification method is proposed, Deep Temporal Con-
sensus Clustering (DTCC), and applied to the Lisbon ALS Clinic dataset. Us-
ing the first three clinical evaluations, DTCC uncovers five clinically relevant
patient groups, that we have evaluated according to (1) disease progression, and
(2) time-to-event for three critical events: NIV, PEG and death. In both cases,
the groups were vastly different, supporting the use of patient stratification for
the development of specialized prognosis prediction models, which we propose
to explore in future work.
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