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Abstract. Machine Learning (ML) based predictive models are impact-
ing research, industry, and society at large thanks to their ability to model
or surrogate real systems. Two of the main current limitations of ML
are the need for large amounts of high quality data and low performance
far away from the observed data. For this reason, in certain applications
where prior knowledge is available, researchers have developed Informed
ML (IML) to decrease ML high quality data voracity and increase ML
extrapolation abilities. In this work we study the differences between ML
and IML excess risk and generalization using also some examples to elu-
cidate the theoretical discussions. Our findings shed some light on the
mechanisms and the conditions under which IML outperforms ML.

1 Introduction

Recent advancements in Machine Learning (ML) impacted both technical prin-
ciples (e.g., data format, architectures, and training procedures), capabilities
(e.g., language, vision, and multimodal), applications (e.g., industry, energy,
and healthcare), and society (e.g., alignment, trustworthiness, and sustainabil-
ity) [1]. ML-based predictive models are nowadays used mainly two scenarios:
modeling [2], namely to learn an input-output relation directly from real data to
be able to make predictions, and surrogation [3], namely to learn an input-output
relation from data partially or totally generated by an already available predic-
tive model or simulator to speed up predictions. Despite the large success of
ML-based predictive models there are still many different weak points that need
to be addressed like the data voracity [4], poor performance in extrapolation [5],
trustworthiness [6], and sustainability [7].

In certain applications, like physics [8] or medicine [9], where prior knowledge
is available, a possible mitigation strategy to some of the problems mentioned
above, e.g., data voracity [4] and poor performance in extrapolation [5], can be
provided by the inclusion of this prior knowledge into ML using the so-called
Informed ML (IML) [10]. The infusion of prior information into ML can be
implemented at various stages of the ML pipeline, primarily categorized into
pre-, in-, and post-processing methods [10]. One can state that pre-processing
lays the foundations acting on the data, in-processing embeds the knowledge by
modifying the learning mechanisms, and post-processing by aligning the outputs
with domain expectations of the machine learning models. Apart from improv-
ing IML itself, what remains open, like for many other phenomena of modern
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artificial intelligence [11], is a fundamental understanding of when and why IML
outperforms ML [10].

With this goal in mind, after some preliminaries in Section 2, we will first
study in Section 3 the excess risk of IML against the one of ML using the
approximation-estimation decomposition [12]. Then, we will study in Section 4
how it is possible to assess the generalization ability of IML and ML focusing
on the effect of the prior knowledge on generalization using statistical learning
theory [13, 14]. Subsequently, Section 5 will leverage some examples to elucidate
the theoretical discussions. Finally, Section 6 will conclude the paper.

2 Preliminaries

Let us consider the ML-based predictive model setting [2] where the goal is to
map from an input X ∈ X to an output Y ∈ Y trying to approximate the
underlying unknown distribution µ over X × Y. This is achieved by learning
a model h, chosen from a class of possible ones H, based on a sample Dn =
{(Xi, Yi)|i ∈ {1, · · · , n}} sampled i.i.d. from µ. The quality of h is measure
according to a loss function ℓ(h(X), Y ) which leads to the definition of risk
R(h) = EX,Y {ℓ(f(Xi), Yi)} and empirical risk R̂(h) = 1/n

∑n
i=1 ℓ(f(X1), Y1). Let

us define with F the set of all measurable functions X → Y. The Bayes model,
i.e., the desired model, is defined as f∗ = argminf∈F R(f). Instead the strategy
of any ML algorithm to approximate f∗ can be formulated as follows h∗ =
arg m̃inh∈HR̂(h) namely, we select H ⊂ F , we use R̂(h) as empirical estimator of
R(h), and we try to search for the best model in H which minimizes R̂(h) using

a practical algorithm m̃in. H is induced by the choice of the functional form
of h (e.g., linear, tree, ensembles, convolutions, and attentions) and the implicit
or explicit regularizers (e.g., wights norm, dropout, and early stopping) [2, 15].

R̂(h) is used since R(f) cannot be computed as µ is unknown [2]. With m̃in
we meant that, given H and R̂(h), actually finding the h ∈ H that minimized
R̂(h) can be a computationally expensive operation and consequently practical
algorithms are deployed (e.g., gradient descent or greedy algorithms) [2, 15].

3 Excess Risk

The excess risk of the ML algorithm can be decomposed as approximation Eapp
(due to the choice of H), estimation Êest (due to the use of Dn), and optimization

Ẽopt (due to the choice of m̃in) errors as follows [16]

R(h∗)− R(f∗) = Eapp + Êest + Ẽopt, (1)

where Eapp = R(ha) − R(f∗) with ha = argminh∈H R(h), Êest = R(he) − R(ha)

with he = argminh∈H R̂(h), and Ẽopt = R(h∗) − R(he). These errors can be
redistributed into the bias-variance decomposition [17] but this decomposition
does not allow to split the difference source of error properly [12].

By carefully optimizing the choice ofH and m̃in we can reduce this excess risk
(e.g., larger H may reduce Eapp but enlarges Eest, more complex H may improve
Eest but enlarges Eopt). Eapp cannot be meaningfully bounded without knowing
µ [2] while Eest and Eopt can be bounded via statistical learning theory (e.g.,
Rademacher Complexity - RC [13] or Algorithmic Stability - AS [14]) plus a term
that depends on the quality ρ of the optimizer such that R̂(h∗)−R̂(he) ≤ ρ [2, 16].
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When we deal with IML, with pre-, in-, or post-processing, we are basically
modifying the learning algorithm by modifying H. In fact the introduction of
the prior knowledge ι into ML may impact, e.g., by input manipulation design-
ing new or different features, by introducing a new regularizer, or by introducing
output constraints [10], and, in all cases, these manipulations can be seen always
as a modification of H into a new space Hι ⊂ H. As a consequence, the larger
is ι the smaller is Hι. Of course, by modifying H we may also impact m̃in as in
Shallow ML where the introduction of, e.g., a differentiable but non-convex reg-
ularizer, may lead to larger Eopt but this additional error is usually manageable
and less impacting [10]. What, instead, can be deeply impacted is the compu-

tational requirements of m̃in, or equivalently the time T needed to find h∗ [10].

Then, for IML, the best model h∗ is found by solving the problem m̃inh∈Hι R̂(h)
and, as a consequence, the decomposition of Eq. (1) need to be reformulated as
follows

R(h∗)− R(f∗) = Eapp + Einf + Êest + Ẽopt, (2)

H n ρ ι

Eapp ↓
Einf ↓
Êest ↑ ↓
Ẽopt ↑
T ↑ ↑ ↓ ↑

Table 1: Typical variations of
Eapp, Einf, Êest, Ẽopt, and T in-
creasing H, n, ρ, and ι.

where Einf = R(hi) − R(ha) with hi =
argminh∈Hι

R(h), Êest = R(he) − R(hi) with
he = argminh∈Hι R̂(h), and Ẽopt = R(h∗)−R(he)
which is equivalent to Eq. (1) plus the addition
of the error due to the introduction of the prior
knowledge Einf.

Note that, in IML, by carefully optimizing
the way in which the priory knowledge informs
ML we can reduce the excess risk with respect
to classical ML [10]. Table 1 reports the typical variations of Eapp, Einf, Êest,
Ẽopt, and T increasing H, n, ρ, and ι.

4 Generalization

While the excess risk analysis discussed in Section 3 is an important step to
understand the differences between ML and IML, in practical situations what is
more important is how to estimate and tune [18] the generalization performance
of an IML-based model bounding the following quantity R(h∗) − R̂(h∗), namely
the distance between what the error observed on the data and the one on the
population. In practice this can be done as follows

P
{
R(h∗) ≤ R̂(h∗) + B̂(h∗) + ∆(n, δ)

}
≥ 1− δ, (3)

where B̂(h∗) is a bias term (related to Eapp) and ∆(n, δ) is a confidence term

(related to Êest). To address this issue in a general scenario we have two main
options: complexity based method, being the RC the most effective approach [13]
and AS [14]. RC has the advantage of being easily bounded if the space of
function is explicitly defined while it is hard to compute in practice [19]. Vice
versa, AS, and in particular the Hypothesis AS, is very hard to bound but is
more easy to compute in practice [19].

In fact, if we consider a quite general shallow IML algorithm (e.g., ensemble,
linear, kernel, random projection) we can formulate it [2, 19] by writing h(X) =∑p

i=1 αiϕi(X) with p ∈ N+, ϕi(X) : X → R, and αi ∈ R with i ∈ {1, · · · , p} and

α̂∗ : argminα∈Rp R̂(α) + λ1

(
λ2ĤML(α) + (1− λ2)ĤIML(α)

)
, (4)
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Fig. 2: Ex1 - (Top) For λ∗
1 and λ∗

2 we report varying p the test error, the train
error, the RC, and the AS for ML, IML1, and IML models - (Bottom) For IM2
and p∗ test error, the train error, the RC, and the AS varying λ1 and λ2.

where, with a little abuse of notation, R̂(α) is the empirical error of the h(X),
ĤML(α) is the usual ML regularizer [2] and the regularizer ĤIML(α) and the
projection ϕ(X) can encapsulate the prior knowledge ι [10]. Note that ĤIML(α)
represents the adherence of the model h∗ (α∗) to ι (e.g., some physical law)
that in theory should be matched perfectly but in practice (due to, e.g., noise
in the data or approximation of ι in the modeling scenario or to necessity of
computational simplicity of h∗ in the surrogation scenario) there is a compromise
between ĤIML(α) and ĤML(α) to find, regulated by λ2 [10].

Under some mild conditions we can prove that when using the RC B̂(h∗) ∝
λ2ĤML(α)+(1−λ2)ĤIML(α) [13, 19]. If we use some implicit regularizers or a deep
IML algorithm we cannot rely on RC and we need to use the Hypothesis AS β
which can be easily estimated from the data and, in this case, B̂(h∗) ∝ β [14, 19].

These tools are extremely important in practical situation since they allow us
to understand, for IML, the impact of ι (e.g., ϕi with i ∈ {1, · · · , p} and the shape
of ĤIML(α)) and the classical ML hyperparameters (e.g., the shape of ĤML(α), λ1,
λ2, and p) on the generalization performance of h∗ (α∗) as compromise between
R̂(h∗) and B̂(h∗) [19].

5 Examples
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Fig. 1: Ex1 - Ground
truth, Dn, and ML,
IML1, and IML2 with
p∗, λ∗

1, and λ∗
2.

In this section we will consider two simple examples to
test the concepts presented in the previous sections. In
the first example (Ex1) we will investigate the effect of
IML in an interpolation scenario, namely the quality
of the model close to the data samples. The second
one (Ex2) will investigate the extrapolation scenario,
namely the quality of the model far away from the data
samples.

Ex1 is based on the work of [19] where Y=||X−0.4|
−0.2| + 0.5X−0.1, h(X)=

∑p
i=0 αiX

i, and ℓ(f(X), Y )=(f(X)−Y )2 inducing

R̂(α) in Eq. (4). For what concerns the ML model we have to set λ2 = 1

and ĤML(α)=
∫ 1

0
[f ′′(X)]2dX=∥Mα∥22 in Eq. (4) for a computable M . For what

concerns the IML model we have inserted the following knowledge about Y :
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f ′(X)=−0.5 if X∈[0, 0.2], f ′(X)=1.5 if X∈[0.2, 0.4], f ′(X)=−0.5 if X∈[0.4, 0.6],
and f ′(X)=1.5 if X∈[0.6, 0.1]. We can insert this knowledge only on some data
points obtaining our IML1, i.e., the ones in Dn, or on all the space X∈[0, 1]
obtaining our IML2. In both cases, ĤIML*(α)=∥Mα − v∥22 in Eq. (4) for com-
putable M and v. Figure 1 reports the ground truth, Dn, and ML, IML1, and
IML2 models for the best hyperparameters p∗, λ∗

1, and λ∗
2. From Figure 1 we

already observe the supremacy of IML over ML. This result can be better ob-
served in Figure 2 where, in the top line for λ∗

1 and λ∗
2 we report varying p the

test error, the train error, the RC [19], and the AS [19] for ML, IML1, and IML2
models. For these results it is possible to observe one expected phenomenon
from Section 3, i.e., the expected risk decreases as the amount of knowledge
injected into the ML is increased. Moreover, we can see that this model works
well in the overparameterization setting, i.e., the more parameters the better the
performance, and the effect is more evident for IML showing that combining ML
and IML strategies to reduce the excess risk may actually positively resonate.
In other words using just ĤML or just ĤIML, even in this simple case, is worse
than a combination of them. Still from the top line of Figure 2 it is possible to
observe how the train error coupled with both RC (which is computable just for
these explicit regularizers) but much more with AS actually tells us (as expected
from Section 4) what hyperparameters and model is the best one to increase our
generalization performance. This is even more evident in the bottom line of
Figure 2 where for IML2 and the best value of p, namely p∗, we report the test
error, the train error, the RC [19], and the AS [19] varying λ1 and λ2 (dark blue
small value and yellow large values).
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Fig. 3: Ex2 - (Left) ground truth, Dn, ML,
and IML models for p∗, λ∗

1, and λ∗
2 - (Right)

test error and train error for λ∗
1 and λ∗

2 varying
p for ML and IML models.

Also from the bottom of Fig-
ure 2 it is possible to see the
effect on the excess risk on the
ML and IML regularizers on
the performance, i.e., we need a
good balance between ML and
IML regularizers, and the ef-
fectiveness of the training er-
ror and AS to actually estimate
the generalization performance
of the IML2.

Ex2 focus on the damped
harmonic oscillator1, using same ML approach of Ex1 while for the IML we

took ĤIML(α)=
∫ 1

0
(c1f

′′(X)+c2f
′(X)+c3f(X))

2
dX=∥Mα∥22, being c1, c2, and

c2 parameter of the Ex1, in Eq. (4) for a computable M . Figure 3 on the left
reports the ground truth, Dn, and ML and IML models for p∗, λ∗

1, and λ∗
2 while

on the right, for λ∗
1 and λ∗

2, we report varying p the test error and the train
error for ML and IML models. From Figure 3 it is possible to see the extreme
improvement in extrapolation abilities of the IML model over the ML one and
the fact that, in this case, overparameterized models are not the optimal choice.
Moreover, Figure 4 reports for Ex2 the equivalent of the bottom line of Figure 2
for IML. Also in this case we can derive the same observation an confirmation
derived for Ex1, of the effect of ML and IML regularizers on the excess risk and

1https://github.com/benmoseley/harmonic-oscillator-pinn
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Fig. 4: Ex2 - Equivalent of bottom line of Figure 2 for IML.

generalization ability studied in Sections 3 and 4.

6 Conclusions

In this paper we elaborated on the Informed Machine Learning, namely the abil-
ity to include prior knowledge into Machine Learning to decrease its high quality
data voracity and increase its extrapolation abilities. In particular we study the
differences between Machine Learning and its Informed version via excess risk
and generalization error analysis. We elaborated it both from a theoretical and
practical perspective using some examples to elucidate the theoretical discus-
sions. Our findings shed some light on the mechanisms and the conditions under
which Informed Machine Learning outperforms plain Machine Learning.
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