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Abstract. Bayesian optimization (BO) methods solve problems with
several black-box objectives and constraints. Each black-box is expensive
to evaluate and lacks a closed-form. They use a model of each black-box
to guide the search for the problem’s solution. Sometimes, however, the
black-boxes may be evaluated at different fidelity levels. A lower fidelity is
simply a cheap proxy of the corresponding black-box. Thus, lower fidelities
that correlate with the actual black-box can be used to reduce the opti-
mization cost. We propose Joint Entropy Search for Multi-Fidelity and
Multi-objective Bayesian Optimization with Constraints (MF-JESMOC),
a BO method for solving the aforementioned problems. It chooses the next
point and fidelity level at which to evaluate the black-boxes as the one that
is expected to reduce the most the joint entropy of the Pareto set and the
Pareto front, normalized by the fidelity’s cost. Deep Gaussian processes
are used to model each black-box and dependencies between fidelities. In
our experiments, MF-JESMOC outperforms other state-of-the-art meth-
ods for multi-objective BO with constraints and different fidelity levels.

1 Introduction

We aim at minimizing K objectives f1(x), . . . , fK(x), under J constraints c1(x) ≥
0, . . . , cJ(x) ≥ 0. We assume x ∈ X and X ⊂ RD. The objectives are expected
to be conflictive and there is not a single optimum, but a set of optimal trade-offs
among the objectives that meet the constraints. This set is called the Pareto
set X ⋆ and evaluating at this set the objectives yields the Pareto front Y⋆.
The Pareto set X ⋆ contains feasible non-dominated points, i.e., X ⋆ ⊂ F , with
F = {x ∈ X : cj(x) ≥ 0, ∀j}. We say that x dominates x′ if fk(x) ≤ fk(x

′)∀k
with at least one inequality being strict. Specifically, we want to solve:

min
x∈X

f1(x), . . . , fK(x) s.t. c1(x) ≥ 0, . . . , cJ(x) ≥ 0 . (1)

We also assume that the objectives and the constraints are black-boxes. That
is, they lack a closed-form expression and their evaluations are potentially noisy
and very expensive to compute. E.g., we may be interested in simultaneously
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minimizing the error of a deep neural network (DNN) and its prediction time,
so that once codified on a chip, its power consumption is below some level.
Evaluating the black-boxes in this case involves training the DNN on some data,
measuring its prediction time, and running a computer simulation, respectively.

Bayesian optimization (BO) methods solve these problems efficiently [1, 2].
They use a model of each black-box to guide the search for the problem’s solution.
Specifically, the model’s predictive distribution identifies the potential values of
each black-box in un-observed regions of X . This uncertainty is then transformed
into an acquisition function, whose maximum gives the next evaluation of the
black-boxes. This process of data collection and model fitting repeats until
a computational budget is met. After this, the model’s predictive means are
optimized to suggest the problem’s solution. The key for BO success is that
fitting the models and optimizing the acquisition function is very cheap compared
to evaluating the black-boxes. In summary, BO methods carefully choose where
to evaluate next, and often require fewer evaluations than other methods.

Sometimes it is possible to perform cheaper evaluations of the black-boxes at
a lower fidelity level. E.g., in the previous example, the DNN may be trained for
only a few epochs. The error of that DNN will be larger, but hopefully similar to
that of the fully trained DNN. Thus, lower fidelity evaluations are much cheaper
to obtain, and are expected to be correlated with the actual black-box value.
Using them in the BO process can reduce the optimization cost. Importantly,
however, the goal is still to get X ⋆ and Y⋆, corresponding to the highest fidelity.

X1 X2 X3

f3f2,3f1,2,3

y1 y2 y3

Fig. 1: MF-DGP for training.

Recent works have addressed
multi-objective BO with constraints
[1, 2] and multi-objective BO with
multiple fidelities [3, 4, 5, 6]. How-
ever, multi-objective BO with con-
straints and multiple fidelities has re-
ceived less attention, with the excep-
tion of [7]. Here, we propose Joint
Entropy Search (JES) for Constrained
Multi-objective Bayesian Optimiza-
tion (CMOBO) with Multiple Fideli-
ties. This method selects at each iter-
ation the point and fidelity level that reduces the most the entropy of {X ⋆,Y⋆}.

2 JES for CMOBO with Multiple Fidelities

The key of any BO method is the model used to estimate potential black-box
function values. We describe first our model and then our acquisition function.

2.1 Deep GPs for Multi-Fidelity Bayesian Optimization

Let D = {(X1,y1), ..., (Xt,yt), ..., (XT ,yT )} be a dataset of observations made
at T different fidelities, with T the target fidelity and t < T lower fidelity levels.
We consider the multi-fidelity deep Gaussian Process (MF-DGP) of [8] to model
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these data. MF-DGP uses a GP to model each fidelity. Let f t be the latent
function of fidelity t. The observation yti at input xt

i depends on xt
i, but also

on f t−1
i , i.e., the previous fidelity level at xt

i. More precisely, it is assumed that
yti = f t(xt

i, f
t−1(xt

i, f
t−2(xt

i, . . .)))+ϵti, with ϵti ∼ N (0, σ2
t ) and y1i = f1(x1

i )+ϵ1i .
This recursive evaluation introduces dependencies between the fidelities. Figure
1 shows the architecture of a MF-DGP, where the first layer is a regular GP.

A deep model with GPs leads to intractabilities [9]. Thus, MF-DGP uses a
sparse variational approximation of a GP in each layer [10], and the parameters
of the model are learned by maximizing the Evidence Lower Bound (ELBO):

LMF-DGP =
∑T

t=1

∑Nt

i=1 Eqt(ft
i )
[log p(yti |f t

i )]−
∑T

t=1 KL(qt(ut)||p(ut|Zt)) , (2)

where f t
i is the i-th value observed at fidelity t without noise, yti is that value

with noise, ut are the process values at the inducing points Zt at layer t, qt is a
variational distribution and KL(·||·) is the Kullback-Leibler divergence.

To model linear and non-linear dependencies between fidelities MF-DGP uses
the following kernel at fidelity (layer) t:

kt(x
t
i,x

t
j) = kρ

t (x
t
i,x

t
j ; θ

ρ
t )
[
σ̂2
t (f

t−1
(
xt
i

)
− c)T(f t−1

(
xt
j

)
− c)

+ kf−1
t

(
f t−1 (xt

i

)
, f t−1 (xt

j

)
; θf−1

t

) ]
+ kδ

t (x
t
i,x

t
j ; θ

δ
t ) , (3)

where all k(·, ·) are RBF kernels and θ their parameters. kρt acts as an input-
dependent scaling factor, kf−1

t models non-linear dependencies w.r.t. the pre-
vious fidelity and σ̂2

t and c are parameters used to capture linear dependencies.
Finally, kδt (·, ·) is a bias term used to account for differences among fidelities.

2.2 MF-JESMOC’s Acquisition Function

Joint entropy search (JES) is an acquisition function that chooses the next point
as the one that reduces the entropy of the problem’s solution {X ⋆,Y⋆} the most
[11]. A reformulation of JES for our particular setting is:

α(x, t) =
(
H

[
p(yt|D,xt)

]
− EX⋆,Y⋆

[
H

[
p(yt|D,xt,X ⋆,Y⋆)

]])
C−1

t , (4)

where Ct is the cost of fidelity t, D is the collected data, p(yt|D,xt) is the pre-
dictive distribution of the black-boxes for fidelity t at x, and p(yt|D,xt,X ⋆,Y⋆)
is the predictive distribution conditioned on the problem’s solution. Finally, H[·]
indicates entropy. Eq. (4) is the mutual information between {X ⋆,Y⋆} and yt

per cost. Thus, it favors choosing x and t where yt is most informative about
{X ⋆,Y⋆}, per fidelity evaluation cost.

H [p(yt|D,xt)] in (4) is the entropy of the predictive distribution of each MF-
DGP for the black-boxes. This entropy can be approximated by the entropy of a
Gaussian distribution with the same moments. The moments can be obtained by
propagating samples through each MF-DGP as in [9]. Moreover, since we assume
independence among black-boxes, we only have to sum individual entropies.

The expectation in Eq. (4) can be approximated via Monte Carlo. We only
have to generate samples of the highest fidelity of each black-box and optimize
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them. The samples are obtained using a random Fourier features approximation
of the sparse GPs in the MF-DGP, as in [12]. The samples are optimized using a
grid of points as in [1]. In practice, we only generate a single sample of {X ⋆,Y⋆}.

We also need to approximate the entropy of the conditional distribution,
p(yt|D,xt,X ⋆,Y⋆), as it is intractable. The conditional distribution is given by:

p(yt|D,xt,X ⋆,Y⋆) =

∫
p(yt|bt,xt)p(bt,bT |D,X ⋆,Y⋆)dbtdbT , (5)

where bt are the noiseless black-box functions for fidelity t, including objectives
and constraints, and p(yt|bt,xt) are Gaussian likelihood factors to incorporate
noise in the observations. The conditional distribution p(bt,bT |D,X ⋆,Y⋆) is:

p(bt,bT |D,X ⋆,Y⋆) = Z−1p(bt,bT |D)p(X ⋆,Y⋆|bT ) (6)

where Z is a normalization constant and we used that (X ⋆,Y⋆) only depends
on fidelity T . p(bt,bT |D) is the posterior for the black-boxes, and the term
p(X ⋆,Y⋆|bT ) is close to 0 for any (X ⋆,Y⋆) not fulfilling the constraints nor
being Pareto-optimal, and larger than 0 and approximately constant otherwise:

p(X ⋆,Y⋆|bT ) ≈
∏

x⋆∈X⋆

[
C∏

j=1

Θ̃(cj(x
⋆))

][∏
x∈X

Ω̃(x,x⋆)

]
K∏

k=1

N (y⋆
k(x

⋆)|fk(x⋆), δ) , (7)

where Θ̃(·) is 1− ϵ if cj(x⋆) ≥ 0 and ϵ otherwise (i.e., x⋆ must be feasible); Ω̃(·)
is ϵ if x is feasible and dominates x⋆ and 1− ϵ otherwise (see [1]); y⋆k(x

⋆) ∈ Y⋆

is the Pareto front point for the k-th objective associated to x⋆ ; finally δ is a
small constant. In our implementation we set ϵ = 10−3. Moreover, the Gaussian
factors in the r.h.s. of (7) guarantee that at X ⋆ we obtain the Pareto front Y⋆.

Inspecting (6) we observe that it simply incorporates the extra factors in
(7) into p(yt|D,xt). These factors can be easily included in the objective of
each MF-DGP in (2), in the data-dependent term. The required expectations
are tractable. Thus, p(yt|D,xt,X ⋆,Y⋆) can be obtained by re-training the MF-
DGP models simultaneously while incorporating the extra factors in (7). We
approximate X in (7) by a random set of 100 instances generated uniformly when
processing each mini-batch. After training, we also approximate the entropy of
p(yt|D,xt,X ⋆,Y⋆) by the entropy of a Gaussian with the same moments.

3 Experiments

We compare MF-JESMOC with other methods. Namely, MF-OSEMO [3], MOMF
[4], MF-SEGO [5], MF-HVKG [6], and MF-CMOBO [7]. Only MF-CMOBO con-
siders constraints (ignoring lower fidelities). We incorporate constraints in the
other methods by multiplying the acquisition by the feasibility probability. MF-
OSEMO and MF-SEGO use standard GPs to model each fidelity and assume
linear dependencies. MOMF and MF-HVKG insert the fidelity level as an extra
feature in a GP. This requires a lot of data to capture fidelity dependencies.
MF-CMOBO models fidelities using a GP with prior mean given by the posterior
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mean of the lower fidelity. Thus, lower-fidelity observations will not reduce the
uncertainty of the higher fidelity. MF-JESMOC’s acquisition is the only one that
considers different fidelity levels for the constraints. Last, we also compare results
with three variants of MF-JESMOC. Namely, RANDOM-HF, which evaluates the
highest fidelity at random. MF-JESMOC-HF, which only evaluates the highest
fidelity, and MF-JESMOC-LF which optimizes the lowest fidelity. The code for
MF-JESMOC is found at https://github.com/fernandezdaniel/MOBOCMF.

We evaluate each method when finding an optimal ensemble of trees with
minimum error on the German-Credit dataset and minimum size in terms of
the number of nodes. We consider also, as a constraint, that the prediction cost
is at most 7% of the original prediction cost when using a dynamic ensemble
pruning technique. See [1] for further details. The parameters optimized are
those described in [1], except for the ensemble size, which is used to obtain
different fidelity levels. We consider two fidelities levels. The highest fidelity
corresponds to an ensemble of 1000 trees and the lowest fidelity to an ensemble
of 100 trees. Thus, C1 = 1 and C2 = 10, approximately. The evaluation budget
is set equal to 50. We considered RBF kernels in all methods. When a method
provides an infeasible point in the estimate of X ⋆, we ignore that point. The
number of initial observations of the lower fidelity is 10 and 20 for the higher
fidelity. We recommend by optimizing the high-fidelity posterior mean at each
iteration, and guarantee that constraints are satisfied with 95% probability.
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Fig. 2: Avg. Pareto front of each method when finding an optimal ensemble.

Fig. 2 shows the average Pareto-front of each method across 100 experi-
ment repetitions. The best method is MF-JESMOC, which finds the most ac-
curate ensembles with the smallest number of nodes. We observe that using
low-fidelity data generally improves the results of only using high-fidelity data.
MF-HVKG and MOMF perform bad because including the fidelity as a feature
deteriorates the GP fit of the data. MF-CMOBO, MF-SEGO and MF-OSEMO im-
prove over MF-JESMOC-HF, but do not perform as well as MF-JESMOC. Finally,
MF-JESMOC-LF performs poorly since it solves a different optimization problem.
Most low-fidelity ensembles are infeasible and do not satisfy the constraint.

Table 1 shows the median hyper-volume (higher better) of each method.
We use the median instead of the average since it is more robust. Again MF-
JESMOC gives the best results and the differences w.r.t. the other methods are
statistically significant. Baseline results are not reported because lack of space.
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MF-JESMOC recommends on average 15% of infeasible points. MF-OSEMO and
MF-SEGO recommend on average 29% and 23% infeasible points, respectively.

Table 1: Median of the hyper-volumes returned by each method ×10.
MF-JESMOC MF-CMOBO MF-OSEMO MF-SEGO MOMF MF-HVKG

1.399±.005 1.223±.003 1.275±.002 1.321±.003 0.085±.004 0.073±.007

4 Conclusions

We have proposed MF-JESMOC, a strategy for Multi-objective BO with con-
straints and several fidelities. MF-JESMOC uses MF-DGPs to model individual
black-boxes and the dependencies between different fidelities. By using the infor-
mation provided by cheap low fidelities MF-JESMOC improves the optimization
results w.r.t. optimizing directly the highest fidelity and w.r.t. other multi-
fidelity methods from the literature. Specifically, it finds solutions with a higher
hyper-volume than those of other methods and with a higher feasible probability.
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