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Abstract. Low Autocorrelation Binary Sequence (LABS) remains an
open complex optimization problem with multiple applications. Existing
studies rely primarily on advanced solvers based on local search heuristics,
such as the steepest-descent local search algorithm (SDLS), Tabu search,
or xLastovka algorithms. These approaches require searching through a
large solution space, which is a computationally heavy and time-consuming
process, leading to slower convergence. To improve convergence speed and
allow for finding better solutions within a limited time, we propose the
Deep Double Q-learning reinforcement learning algorithm for the LABS
problem to support heuristic methods. The model aims to narrow down
the search space without causing a drop in the final efficiency. Our ex-
perimental study showcases that the proposed approach is a promising
direction for developing a highly efficient method for the LABS problem.

1 Introduction

LABS is one of the hard discrete problems which, despite wide research, remains
an open optimization problem for long sequences. It also has a wide range of
applications including communication engineering [13, 14], statistical mechanics
[2, 11] and mathematics [7, 10].

The objective of LABS problem [5] is to find a binary sequence S with length
L, where si ∈ {−1, 1}, which minimizes the energy function E(S). The problem
can be also defined as maximizing the merit factor F (S) [6], which binds LABS
energy level to the length of a given sequence:

Ck(S) =
L−k−1∑
i=0

sisi+k and E(S) =
L−1∑
k=1

C2
k(S) and F (S) =

L2

2E(S)
(1)

Prevalent methods of solving LABS are heuristic algorithms that utilize plau-
sible rules to locate satisfactory sequences more quickly. A well-known method
is Steepest Descend Local Search (SDLS) [1], which is also very effective on
GPGPU architectures [15, 12]. The authors of [16] proposed two new variants
of the SDLS algorithm that extend the neighborhood of the sequence to a 2-bit
and recurrent exploration of sequences at the 1 and 2-bit distance. Another pop-
ular approach is the Tabu search [4], which also achieves good results using the
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GPGPU architecture [12]. Moreover, it is possible to leverage the neural network
to improve the TABU parameters [17]. The machine learning techniques used
are standard models or deep learning models that support standard optimization
algorithms at a selected stage. There are also end-to-end solutions that com-
pletely replace standard optimization algorithms (graph neural networks and
reinforcement learning) [3].

However, we can identify the following gaps: i) very scarce use of modern re-
inforcement learning (RL) techniques in hard discrete problems; ii) few methods
that apply hybrid approach with deep reinforcement learning and local search al-
gorithms. In this paper, we attempt to fill these gaps by proposing a method for
solving challenging discrete problems by combining local optimization heuristics
and Deep Reinforcement Learning (DRL) that minimizes the searching space
based on the current computing context. We experimentally verify this concept
on the low autocorrelation binary sequence problem (LABS) with SDLS search
algorithm. In summary, we aim to answer the following research questions:

• RQ1: Can DRL improve the heuristic algorithm to achieve better
results in the LABS problem?

• RQ2: Can DRL deal with the LABS’s problem of any size?

2 Methodology

2.1 Environment, State, action and reward definition

We create an artificial environment simulating the SDLS algorithm resolving the
LABS’s problem. The main elements of the proposed environment are the input
sequence S with length L, energy E and the best current sequence Sbest for which
the best current energy Ebest was calculated. The environment was created in
the gym library. In our proposed environment, the state st represents the input
sequence S. Based on st the agent takes an action at that determines the index
of value in S that should be changed to achieve the best possible energy Ei in a
long-term.

RL is a framework for sequential decision-making. Therefore, immediate re-
ward and long-term rewards are provided to the model. The model promotes
maximizing the merit factor value (eq. 1) which, in our case, represents immedi-
ate reward. At the same time, the model is severely penalized by a -1 value when
taking an action increases the energy value. We leverage the Bellman equation
to calculate the reward after taking action t, as follows:

rt =

{
−1 if Ei > Ei−1∑i=t+1

i=N
1

γt·Ei
otherwise

(2)

2.2 Double Deep Q-Learning Algorithm

In order to solve LABS using RL, we decided to use deep double Q-learning
(DDQN) [9] because it leverages an off-policy approach capable of learning a
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Algorithm 1 Deep Double Q-Learning for resolving LABS problem
Input: λ – learning rate, γ – discount factor, ϵ – small number > 0, N – Itera-
tions number, J – Environment steps per iteration
1: Initialize primary network QΘ and target network Q′

Θ.
2: Initialize replay buffer D
3: for i ∈ {0, 1, . . . , N} do
4: Initialize state s0
5: for j ∈ {0, 1, . . . , J} do
6: Following ϵ-greedy policy select action at (index of bit to change) with

probability ϵ. Otherwise observe current state st (input sequence) and
select action at = maxaQ

A(st, at)
7: Execute at, observe next state st+1 and reward rt (calculated as F(S)

from eq. 1 or set as -1 (see sec. 2.1))
8: Store (st, at, rt, st+1) in replay buffer D
9: end for

10: for update step do
11: Sample e = (st, at, rt, st+1) from D
12: Compute target Q-value:

Qt = rt + γQΘ(st+1, argmaxa′QΘ′(st+1, a
′))

13: Perform optimizer step on Qt(st, at)−QΘ(st, a))
2

14: Update target network parameters:
Θ′ ← λ ∗Θ+ (1− λ) ∗Θ′

15: end for
16: end for

general policy that can adapt to different situations. DDQN is a combination
of a value estimation method Double Q-Learning [8] and a deep neural network
(DNN). The algorithm consists of the exploration and exploitation phase. In
each episode, the algorithm takes an action by sampling from a set of possible
actions (in the exploration step) or choosing the best one from the current policy
(in the exploitation step).

Algorithm 1 shows the DDQN process. It starts with the initialization of
the primary network, target network, and replay buffer D (lines 1-2). Then, the
algorithm executes N episodes. Each episode starts with state initialization as a
randomly selected sequence s0 with length L (line 4). Then, in every J step, the
algorithm chooses the action following the ϵ-greedy policy (line 6). Each action
changes a single bit in q sequence st, and is determined either as a random
action (exploration) or the best action observed so far (exploitation). Then,
the algorithm executes the action, observing the next state st+1 and receiving
a reward rt (line 7). The action, rewards, and states are stored in the replay
buffer (line 8) and used in the model training process (lines 10-15).

In inference mode, the trained model returns the best possible action for the
given state until no future improvement can be observed (after some K step (see
section 2.3)) the DDQN model is stuck in the local minimum).
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2.3 The concept of hybrid platform

We also propose a Hybrid method utilizing both deep Q-learning and the SDLS
method. The process starts with the RL model, looking for the best solution.
After RL converges and does not yield any more improvements with additional
iterations, its output sequence is passed to the traditional SDLS algorithm, which
continues until no further improvements can be attained. This way, the RL
narrows down the search space for the SDLS algorithm. The advantage of the
hybrid approach is that DDQN can identify better sequences without analyzing
all possible L solutions in every iteration. Consequently, the process converges
faster through the initial steps and yields better results.

3 Experiments and conclusions

Before carrying out the final experiments, we performed preliminary experiments
to set up the input parameters and scenarios. As a result, the experimental setup
is as follows: i) Neural Network consists of three convolutional and three fully
connected layers; ii) λ = 1e-4; iii) batch size is set to 128; iv) ϵ decays exponen-
tially with start value equal to 0,9; v) number of environment steps per iteration
equals 1024; vi) experiments are carried out for four sequence lengths: {64, 96,
128, 256} and for these values, the training time has been set appropriately {48h,
72h, 100h, 150h}. Moreover, the methods have limited time in which they need
to find the most optimal solution (inference time) – 10 minutes.

To answer our research questions from Section 1, we compare the three al-
gorithms: i) traditional SDLS; ii) RL model; iii) hybrid of the RL model and
traditional SDLS. We conduct experiments for four lengths of randomly gener-
ated input sequences (64, 96, 128, 256). Table 1 showcases the average and the
highest results from 5 independent executions for every algorithm, where each
algorithm had 10 minutes to find a solution. As we can observe, the RL model
can handle the LABS problem with reasonable results close to the traditional
SDLS algorithm for all considered lengths of input sequences (RQ2).

Another point worth analyzing is the hybrid of the RL and SDLS. The hy-
brid model achieves the best results (the lowest energy values) for all sequence
lengths in the best and hybrid modes. The results showcase that RL can support
heuristic algorithms such as SDLS to improve the quality of the solution (RQ1).
Moreover, Figure 1 demonstrates how the results change over testing time. We
observe that the RL model is more effective than the SDLS algorithm through
the first 5.5 min (L = {64, 96}), 4.5 min (L = 256), and 8 min (L = 128).

Table 1: Min and average of best value (5 independent runs; 10 minutes)

Sequence
length

SDLS RL HYBRID
Minimum Average Minimum Average Minimum Average

64 324 390 348 398 320 375
96 868 970 868 970 748 930
128 1600 1804 1668 1810 1564 1744
256 7228 7807 7108 7887 6812 7541
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(a) Energy of LABS L = 64 (b) Energy of LABS L = 96

(c) Energy of LABS L = 128 (d) Energy of LABS L = 256

Fig. 1: Average best energies achieved by SDLS, RL and Hybrid during 5 inde-
pendent runs through ten minutes

4 Summary and Future works

This paper introduces deep double Q-learning as a method that can successfully
be applied to the LABS problem. Moreover, we showcase that combining DRL
and local optimization heuristics yields better results than heuristics. These
results create a foundation for a new promising direction in finding solutions to
NP-hard problems by leveraging deep RL and hybrid methods. In future works,
we will extend the presented approach with more algorithms dedicated to the
LABS problems, such as Tabu search or self-avoiding walking.
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