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Abstract. Accurate motion classification from surface electromyogra-
phy signals is crucial for controlling bionic prostheses. Unfortunately, most
state-of-the-art classifiers need to be re-trained with lots of data to recog-
nize any new motion. Therefore, we propose a few-shot similarity learn-
ing approach that can be applied to new classes without any re-training,
just using one to five reference points per new class. In experiments on
two real-world data sets, we find that our proposed approach outperforms
two state-of-the-art approaches for few-shot learning on sEMG signals,
namely a transfer learning and a contrastive learning approach. Our ex-
periments also reveal that the choice of loss function is crucial for perfor-
mance whereas the choice of similarity function has less effect.

1 Introduction

Tens of thousand of patients lose their hand every year, not least due to injury
in the Ukraine war [1]. Bionic prostheses enable such patients to regain some
of their hand function [2]. Such prostheses are typically controlled by recording
surface electromyography (sEMG) signals of the patient and infer the intended
prosthesis motion from these signals [2]. Machine learning-wise, this is typically
treated as an on-line motion classification task: every time window of sEMG data
is classified and the classification yields a motion command for the prosthesis.

Unfortunately, current sEMG motion classification approaches suffer from
several drawbacks, such as lack of robustness to everyday disturbances [3] or the
need to re-train the model for every new motion not in the training data set.
We address the latter problem. In particular, we propose a few-shot learning
approach based on Siamese networks: we train a representation network which
maps input sEMG signals to representations that are more conducive to motion
classification, then we use a similarity function to perform the actual classifi-
cation. To classify a new motion, we only need very few examples (about five
time windows, corresponding to about one second of recording time) and no
re-training of the model.

Some prior work has already addressed the issue of few-shot learning for mo-
tion classification from sEMG data. In particular, [4] proposes a meta-learning
approach in which each classification decision is made by feeding the test point
alongside reference points for each class into a deep network and predicting to
which class the test point belongs. While this approach appears to perform well,
it is limited to five classes during inference, which is not compatible with our
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setting, where we wish to extend the number of possible motions a patient can
perform. More applicable to our setting is prior work by [5]. They propose to
first train a standard deep neural net classifier on the training set of motions,
then removing the last two layers of the network, freezing the previous layers,
and attaching two new layers which are compatible with few-shot learning and
are adjusted to the new classes. We argue that this scheme can be improved by
setting up the network as a few-shot learning approach right away.

In more detail, our contributions are 1) we simplify the approach of [5] by
applying a few-shot learning scheme instead of a transfer learning + few-shot
learning scheme; 2) we investigate four different notions of distance in the final
layers of the architecture and demonstrate that the choice does not matter for ac-
curacy (but for convergence behavior); and 3) we evaluate the proposed approach
on two real-world motion classification data sets of sEMG data, demonstrating
that our proposed scheme outperforms both the state-of-the-art of [5] as well as
a variant of contrastive learning.

2 Method

The goal of our method is to perform few-shot motion classification on sEMG
data, meaning: we wish to train a motion classifier for sEMG data on a basic set
of motions and apply it to new motions without any re-training, using only a few
(one to five) reference points for each new motion. We start from the concept
of Siamese networks [6], meaning that we first pre-process the input signal, then
feed it through several representation layers and finally perform classification
based on similarity. However, while Siamese networks are traditionally trained
via contrastive learning, we follow [5] who rather learn a similarity measure
via binary classification (same-class versus different-class). Hence, we call our
method few-shot similarity learning. We now describe representation layers, and
similarity computation in turn before we go into more detail regarding training
and inference.

Pre-processing: The input is a surface electromyography (sEMG) signal
with multiple channels (typically 2-20 electrode channels). We preprocess such
a signal using standard filters, and segment the signal into time windows with
overlap. For example, Nearlab [5] segments the signal into time windows of 250
ms length where each window is shifted by 62.5 ms to the previous one. After
pre-processing, we obtain time windows xt, each a matrix with samples as rows
and channels as columns.

Representation layers: Each data point xt is processed with represen-
tation layers to obtain a representation ϕ(xt) that is more suited to motion
classification. Similar to [5], we apply three convolutional blocks, each consist-
ing of a 1D convolution, batch normalization, a random rectified linear unit
(RRELU) [7], max-pooling, and dropout (refer to Fig. 1). Finally, the resulting
matrix representation of the input time window is flattened into a vector ϕ(xt).

Similarity layers: In order to classify an input data point x, we determine
how similar it is to reference points x′ with known label. As similarity measure,
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Figure 1: The architecture of the proposed Siamese network.

[5] suggest a rather unusual variant of the L1 distance, namely the absolute
difference between the representations |ϕ(x) − ϕ(x′)| followed by a linear layer
and a sigmoid. [5] call this an L1 layer. The sigmoid ensures that we can
interpret the similarity as a confidence that x and x′ belong to the same class.
This confidence value can, then, be plugged into a binary classification loss.

Mathematically speaking, the linear transform could also be integrated into
the representation layers before. Therefore, we investigate not only the L1 layer
proposed by [5] but also a simplified L1-sum layer which uses the regular L1
distance between representations followed by a 1-dimensional linear layer that
converts from distance to similarity. More precisely, we obtain the variants:

simL1(x, x
′) = σ

(
b−

n∑
j=1

wj · |ϕ(x)j − ϕ(x′)j |
)
, and (1)

simL1-sum(x, x
′) = σ

(
b− w ·

n∑
j=1

|ϕ(x)j − ϕ(x′)j |
)
, (2)

where w and b are the parameters of the linear layer and σ is the logistic function.
To further study the impact of different similarity functions, we also compare
to the squared Euclidean distance (L2) (ϕ(x)−ϕ(x′))2 and its sum version (L2-
sum).

Training: Similar to [5], we select random pairs from the training data that
either belong to the same or to different classes. Same-class pairs receive the
label y = 1, different-class pairs the label y = 0. Then, we employ the binary
crossentropy loss ℓ(x, x′, y) = −y · log[sim(x, x′)] − (1 − y) · log[1 − sim(x, x′)].
We optimize the loss via standard, gradient-based optimizers (refer to the next
section for more details). We also compare to a variant of the contrastive loss,
ℓ(x, x′, y) = y · d(x, x′)2 + (1 − y)[1 − d(x, x′)]2, where d(x, x′) is the Euclidean
distance between ϕ(x) and ϕ(x′).

Inference: For the inference process, we require reference points xc,k for each
class c. For each test point x, we compute the similarities sim(x, xc,k) and assign
x to the class with the most similar reference point, i.e. argmaxc maxk sim(x, xc,k).
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3 Results

We compare the few-shot classification accuracy of the L1, L2, L1-sum, and
L2-sum variants of our proposed approach with the transfer learning approach
proposed by [5], as well as a variant of contrastive learning (see above for the
loss).

We evaluate on two data sets, Nearlab and NinaPro DB2. The Nearlab
dataset [5] includes surface electromyography (sEMG) data of 11 able-bodied
participants performing 8 basic motions (flexion, extension, supination, prona-
tion, hand open, pinch, lateral pinch, and grip) and 6 combined motions (supina-
tion or pronation combined with pinch, lateral pinch, or grip). Each basic motion
is repeated 5 times in 3 different positions of the hand (sideways, palm up, palm
down). The 6 combined motions are repeated 5 times in a sideways hand po-
sition. 10 differential sEMG channels are recorded using electrode pairs places
around the forearm at 2048 Hz sampling frequency. The data are pre-processed
with a 10-500 Hz bandpass filter and a 50 Hz Notch filter and segmented into
time-windows of 250ms with a stride of 62.5 ms. The 8 basic motions are treated
as training data and the 6 combined motions as test data.

The NinaPro DB2 [8] contains sEMG data of 40 able-bodied participants
performing three exercises: exercise B involves 9 hand configurations (such as
pointing or fist) as well as 8 wrist motions (such as pronation or supination);
exercise C involves 23 grasps; and exercise D involves flexions of single fingers or
two fingers combined. Each motion is repeated 6 times. 8 electrodes are placed
in a ring around the forearm, 2 additional electrodes at tricep and bicep, and
two final electrodes close to the wrist. All electrodes were wireless with 2kHz
sampling rate. The sEMG data are pre-processed with a 10-450 Hz bandpass
filter and segmented into time windows of 200 ms with a stride of 30ms. Exercises
B and C form the training dataset, while exercise D is used as test dataset.

The hyperpaprameters are chosen in alignment with [5]. For all models,
the representation layers are three 1D convolutional layers with 32, 48, and 64
neurons, respectively. The filter sizes of the 1D convolutions are 13, 9, and 5.
Each convolutional layer is followed by 1D BatchNorm, a random ReLU, max-
pooling with size of 4, and a dropout layer with rate at 0.3 (refer to Fig. 1).
We train all models using an Adam optimizer with a batchsize of 32 for Nearlab
(as in [5]) and 64 for NinaPro. The training lasts 100 epochs, and the learning
rate decays from 0.0002 to 0.00008 for Nearlab and from 0.0002 to 0.00001
for NinaPro. For L1-sum and L2-sum, the learning rate decays from 0.0002
to 0.00001; the low learning rates were needed to make L1-sum and L2-sum
converge somewhat reliably.

All models are implemented in pytorch with cuda. The experiments were
run on a desktop PC with Intel Core i9-13900 CPU, 32 GB RAM, and NVIDIA
RTX 4000 Ada GPU with 20GB VRAM. The code of this paper can be found
at https://gitlab.com/fewshotsiamesenetwork/ESANN/.

Table 1 lists the accuracy and standard deviation of all methods on the Near-
lab and NinaPro dataset. We observe that L1 performs best with an accuracy
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Table 1: Mean 5-shot accuracy (± std.) across participants of all methods on
Nearlab (left) and NinaPro (right).

method Nearlab NinaPro

transfer learning[5] 0.75± 0.09 0.35± 0.09
contrastive loss 0.80± 0.07 0.39± 0.08

L1 0.85± 0.06 0.44± 0.09
L2 0.83± 0.06 0.43± 0.09
L1-sum 0.84± 0.04 0.45± 0.09
L2-sum 0.84± 0.06 0.43± 0.09

Table 2: Mean n-shot accuracy (± std.) of L1 on Nearlab.

n 1 2 3 4 5

acc. 0.73± 0.08 0.79± 0.08 0.82± 0.06 0.84± 0.06 0.85± 0.06

of 0.85± 0.06. The inference speed of each sample is 13ms. However, the other
similarity learning methods(L2, L1-sum, L2-sum) perform similarly well and no
significant differences are detected. Both contrastive learning and transfer learn-
ing performed significantly worse (p < 0.01 for both in a Wilcoxon signed-rank
test). This indicates that the choice of distance has only minor effects on accu-
racy, but the loss function (binary crossentropy instead of our contrastive loss
variant) and training procedure (few-shot learning instead of transfer learning)
does matter. During the experiments, we note that the L1-sum, and L2-sum
methods sometimes did not converge and had to be restarted. We suspect that
the convergence issues for L1-sum and L2-sum are due to an ill-conditioned opti-
mization problem, whereas the over-parametrization in L1 and L2 may support
optimization speed and reliability [9]. As such, in practice, L1 or L2 are recom-
mended. We also notice that accuracies on NinaPro are much lower compared
to Nearlab, indicating that this data set is considerably harder, likely because
the test motions are quite different from the training motions.

Table 2 lists the accuracy of the L1 model on NearLab for varying number of
reference points. The accuracy of one-shot learning is 0.73± 0.08 and is similar
to the transfer learning scheme from Table 1. The accuracy improves by 11%
to 0.84± 0.06 when using 4 data points. The additional improvement to 5-shot
learning is only one percent (non-significant), indicating saturation.
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4 Conclusion

We investigated four variants of few-shot similarity learning, differentiated by the
similarity measure they use in the final layer. In experiments on two real-world
data sets (Nearlab and NinaPro DB2), we found that the choice of similarity
measure has no significant effect on accuracy, but that it does influence conver-
gence properties during training. In particular, variants which weighted single
dimensions of the distance converged more reliably. We also observed that train-
ing the few-shot learning model from scratch outperforms the transfer learning
scheme of [5] by about 10% and contrastive learning by about 5%. This is an
interesting finding for few-shot learning, where the Euclidean distance in the last
layer has been standard practice. Finally, we observed that the accuracy already
appears to saturate at four reference points for few-shot learning, indicating that
– given an appropriate representation – very few data points are sufficient for
this approach.

Several limitations remain before our approach can be applied in practice,
though: Future work should evaluate the approach in an online study with actual
amputees and check the the transferability of models across patients.
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