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Abstract. Knowledge integration into machine learning systems is a
promising and successful strategy to achieve more plausible and consistent
results. The plausibility is accompanied by better model interpretability
due to the adjustment of the machine learning system to the domain
speci�c requirements and restrictions. Further, informed machine learning
can be seen as a particular task speci�c regularization of the model
leading to better learning convergence and frequently also requiring a lower
amount of training data. This short introduction paper addresses some
recent aspects, how domain knowledge can be integrated into learning
systems on di�erent levels ranging from informed feature extraction to
domain adjusted structure and model architecture.

1 Introduction

Machine learning currently is dominated by deep neural network architectures
(DNN), which o�er great �exibility and frequently yield superior performance
[14]. This dominance has lead to an overwhelming number of successful
applications in a broad variety of technical areas ranging from image and text
processing and analysis, feature based data investigation and sequence analysis
to the evaluation of structured data like graphs or general proximity relational
data. The �exibility of DNN can be primarily attributed to the large model
complexity [3]. Thus DNN are mainly used in unsupervised representation
learning and coding as well as in supervised scenarios, i.e. regression and
classi�cation learning.

Yet, training of deep models usually requires huge training data sets and,
hence, also need long training time. Further, due to the great model complexity
the challenge to avoid local minima of the loss function is non-trivial [1, 5, 17].
To tackle this problem several regularization techniques are favored [3]. Further,
as pointed out in [7], stable learning contributes to causal inference whereby
stability maybe achieved augmenting the database by additional information.

Another possibility to deal with those di�culties is to integrate additional
knowledge available about the data into the data handling by the machine
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learning model. Further, the model structure can be adjusted to re�ect prior
knowledge regarding the application domain [44, 43]. Otherwise, integration of
external domain knowledge also may support advanced model explanations after
training and predictions in the application phase. Hence, knowledge integration
helps to achieve interpretable machine learning systems as demanded more and
more for successful arti�cial intelligence application in many areas [21], e.g.
technical or medical AI-supported systems. Hence, informed machine learning
can be seen as learning with hybrid information consisting of both the essential
data and knowledge sources determining processing pipeline in contrast to pure
data-driven machine learning. Generally, knowledge integration contributes
to model acceptance and trustworthiness of the machine learning system and
regarding explanations [10, 16, 32].

In this contribution we will highlight several strategies to incorporate domain
knowledge into machine learning systems as they are used in several application
areas like medical informed machine learning, user-centric explainability of
machine learning approaches in healthcare as well as in physics, engineering and
bioinformatics or other fascinating application areas [36, 37, 23, 25, 20, 15, 12].

2 How to integrate knowledge into machine learning

systems

Traditional machine learning models frequently lack awareness of the
intrinsic structure between data attributes, leading to decisions based on
confounding variables, improper relationships, or latent variables without
physical interpretation. The integration of domain knowledge into machine
learning systems helps to avoid/reduce these e�ects and, therefore, supports
scienti�c discoveries and data appropriate processing can be realized on various
levels and from di�erent perspectives. Yet, it is not always clear how and
where domain knowledge can be employed adequately and to what extent this
integration contributes to improved performance as well as leading to better
explanations derived from it. A general framework is depicted in Fig. 1. In
the following we will highlight some conceptual aspects and approaches for
knowledge incorporation into machine learning models without any claim of
completeness.

Feature extraction and data comparison The speci�c structure of the data
samples to be handled by the machine learning system determines an appropriate
processing. Depending on the task and additional knowledge about the given
database an informed feature extraction may be applicable. For example, in
image processing the application of scale-invariant feature transforms (SIFT,
[22]) or speeded up robust features (SURF, [2]) are popular as well as Fourier
and other integral transformations. Further, it turns out that speci�c proximity
measures frequently are more suitable for particular data structures, e.g.
structural similarity index for image comparison [4], graph-kernel based distances
for graph-structure data [41], or functional norms like Sobolev-norms for time-
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Fig. 1: Data analysis by an informed machine learning system taking a domain
expert in the loop: Additional domain knowledge is provided to the model by
the expert for adjustment and training. The informed system supports improved
explanations and allow extended evaluations. Scheme adapted from [8].

series [40, 29, 19, 33] whereas divergences are favored to evaluate the dissimilarity
between probabilistic vectors [39]. Kernels, as another important ingredient
for various machine learning models also can bene�t from domain speci�c
information as explained in [24].

Thus, the selection of a suitable proximity measure or an adequate feature
extraction has to be in accordance with the given data types and machine
learning task. Thereby, attention has to be given to keep or better to enhance
the task relevant information of the data.

Task dependent loss functions The choice of a loss function for the machine
learning system matching the requirements of the model and, at the same time,
the particularities of the data environment and the learning task is crucial for the
performance of the trained model as well as for the learning process. Informed
loss function explicitly favor or penalize task solutions which are in agreement
with the prior domain knowledge. Hence, the domain knowledge plays the role
of additional constraints for the general complex learning system contributing
to a task speci�c regularization [38]. As a simple example, the choice of sum-
squared-error loss or cross-entropy-loss based on divergences is triggered by the
task type (regression or classi�cation). In Support Vector Machines (SVM), prior
information can be integrated into the constraints regarding the loss function
[18, 35]. An example in medical application area is presented [26], where the
survival time of tumor patients has to be predicted but only sparse database
is available. The resulting regression model is obtained by convex optimization
where the tumor grading and other correlations determine the constraints for
the optimization to compensate the low data availability.

One of the most prominent examples for loss-constraint knowledge
integration is machine learning application for dynamic systems in physics
as proposed in [15]. Here, the di�erential equations of the dynamical
system representing the physical laws act as limiting constraints for admissible

407

ESANN 2024 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence and 
Machine Learning.  Bruges (Belgium) and online event, 9-11 October 2024, i6doc.com publ., ISBN 978-2-87587-090-2. 
Available from http://www.i6doc.com/en/.  



solutions and, �nally, a training data driven solution of the di�erential
equation system is synthesized. Similar approaches for other physics or related
engineering application areas are currently under consideration, for example
[6, 34] in this ESANN 2024 proceedings. Those dynamical systems related
knowledge integration also contributes to advanced machine learning systems
for epidemiology research [30].

Thus, scienti�cally plausible and consistent results are enforced by informed
determination of adequate loss functions. Doing so, frequently less training data
are required compared to standard approaches with non-speci�c optimization
[45]. Further, the generalization ability usually is improved by those informed
loss-based regularization techniques due to the resulting overall variability
restriction.

Domain speci�c model architectures Modern machine learning models are
dominated by deep architectures, which usually o�er best �exibility and superior
performance. Yet, the internal decision paths inside the model architecture are
often impossible to interpret. Further, those deep architectures usually require
huge databases for training. Here, knowledge integration may help to deal
with these insu�ciences and can be understood as a kind of semantic-based
regularization for learning and inference [11]. Usually, this semantic domain
knowledge is give as provided relations between (parts of) data structures,
ontologies or plausibility and probability constraints regarding the expected
solutions. These information frequently are given as algebraic equations or
relational data (graphs). Yet, other types of augmented information, e.g.
forbidden solution areas due to ethical or other aspects.

Beside the above mentioned resulting loss constraints or modi�cations, the
additional knowledge can be used to adjust the model architecture. Respective
approaches are promising attempts in bio-medical areas as well as in engineering,
if complex tasks with maybe complicate data structures have to be solved and/or
limited data are available:

� computational neuroscience: The understanding of complex brain
functions requires more realistic neuron models than perceptron [27],
which are usually the basis of deep networks. Further, neuroanatomical
properties including areal structure and local and long-range connectivity
has to be re�ected by a modeling arti�cial neural network for real cognitive
brain function analysis.

� medicine: As pointed out in the beginning of this section, traditional
approaches do not take into account the intrinsic structure between
attributes and, hence, leading to decisions based on confounding variables
or latent features without physical interpretation which could cause
disastrous decisions in medicine. Therefore, known dependencies between
data item have to be re�ected by the design of the network structure,
i.e. the connectivity graph within the neural network model has to
mirror the known possible but not necessarily observable in�uences and
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relations [20, 36]. As an example we refer to cancer research an respective
biologically-informed networks [46].

� bioinformatics: As in medicine, here reliable interpretability of biology-
inspired deep neural networks have to adopt data available knowledge
about hierarchies and dependencies to specify the neural network structure
(number of layers and available trainable connections between them) [13].
In gene expression analysis, this knowledge could consist of discovered and
veri�ed pathways es well as observed regulatory processes between genes on
di�erent process levels [12]. Alternatively, those structural knowledge can
be used to �nd an interpretable embedding scheme for low-dimensional
classi�cation learning by dependency graph matrix decomposition as
explained in [42].

� engineering : Beside the physics-informed approaches, hybrid modeling in
engineering combine a mechanistic simulation with a machine learning
model to produce a more realistic behavior than considering both aspects
independently [23]. In sensor fusion, several sensor can be combined
based on a relation graph describing their technical dependencies [47].
Accordingly, the sensoric outputs established as possible node connections
in a network for informed sensor data processing.

In general, domain speci�c adaptation of general neural network architectures
lead to better interpretability of the model outcome. In particular, the trained
model allows to analyze, which information contributes most to the model
prediction and which other information is neglected.

3 Conclusion

Knowledge integration into machine learning systems is an increasingly
important aspect to to adjust models to the given task domain. This integration
can be on di�erent levels including the general model architecture and used
building blocks, task speci�c feature extraction and combination of sensoric
information as well as problem speci�c mathematical modeling of the objective to
be learned. This paradigm frequently contributes to achieve better perfomances
and more plausible solutions in terms of the application domain. Further,
informed machine learning leads to better output interpretability and evaluation
and, hence, quali�es for general model explanations. Further, for post-hoc
checks, where the scienti�c plausibility and consistency of the results is checked
and possibly invalid results are removed, the domain knowledge can be used to
evaluate those decisions enforcing knowledge consistent results.

Technically, integration of expert knowledge usually constitutes a
regularization of the model and the solution space. Another advantage beside
performance and interpretability of this strategy is that the domain speci�c
regularization frequently yields better convergence during learning as well as
usually the requirement regarding the amount of available training data is
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drastically reduced. Thereby, knowledge informed learning can be used if the
model is learned from the scratch or a pre-trained model has to be adjusted for
a speci�c application.

In consequence, more sparse machine learning systems are obtained with
reduced data requirements and, hence, lower energy consumption during model
training. In this sense, informed machine learning can contribute to achieve
more sustainable AI systems [9, 28, 31].
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