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Abstract. In this work, we will consider how privacy for vector quan-
tization models can be broken in a federated learning environment. We
show how a potential attacker can expose data from the prototype updates
without needing to know about the specific model used by exploiting the
transparency of vector quantization. Finally, a 1-user environment exam-
ple based on GLVQ will be shown.

1 Introduction

Federated Learning (FL) has gained attraction for settings in which data privacy
has to be ensured [1]. The collaborative nature of FL allows to train a machine
learning model across various Users by only sharing the respective updates with
a server which accumulates the updates and provides the updated parameters
of the model to the users [1, 2]. Nevertheless, Vector Quantization (VQ) models
have been studied in similar high-stakes domains, such as medicine [3], since
VQ models offer rich interpretability options due to their transparent nature
and a respective consideration of VQ in FL settings is found in [2]. However,
the authors of [1] show how neural networks violate the privacy concern for FL
settings. Our contribution therefore aims to transfer the approach of [1] to FL
scenarios based on VQ models yielding a scheme like

Useri
Ui(t)−−−−⇀↽−−−−
P(t+1)

Server (1)

in which a user i sends the calculated update set Ui(t) ⊂ Rn for time step t to the
server, which accumulates the updates of the users and sends back the updated
prototype set P(t + 1) ⊂ Rn. Thereby, the set Ui(t) can be comprehended as
the calculated gradients or in general as the update vectors provided by user i
and, ultimately, the privacy violation is based on reconstructing the data used
to create Ui(t).

1.1 Setting

The threat model we are considering in this work is based on an honest-but-
curious server in agreement with [1]: An attacker is allowed to record the com-
munication between the users and the server and store respective send contents,
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but any interference with and modifications to the learning scheme are excluded.
Additionally, an attacker may only know that VQ is used, but not which specific
variant. Moreover, we shall consider in this work a 1-user case with the remark,
that the here shown approach can be extend for a multi-user scenario, since an
attacker could simply limit its investigation to some specific user. Therefore,
we shall drop in the following the index notation for the user. The goal of the
attacker is then to reconstruct the data by only considering the (stored and
recorded) prototypes and update vectors.

2 Abusing Transparency of Vector Quantization Models

Due to the lacking knowledge of the actual VQ variant in use, there is also no
knowledge about the learning scheme and the attacker can only guess how U(t) is
constructed on the user-side and how the updates are accumulated on the Server-
side. Nevertheless, [4] proposed a generic learning rule for VQ models which is
formulated based on the underlying decision making and thus directly linked to
the transparency and interpretability of VQ: Given a data sample x ∈ X ⊆ Rn

the rule yields for the update vector u(t) = g(x,p(t)) · s(x,p(t)) ∈ U(t) of a
particular prototype

∆p(t) = p(t+ 1)− p(t) = σ · ϵ · u(t) (2)

where σ ∈ {−1, 1} is a sign, ϵ is a learning rate, g(x,p(t)) determines a gain
and s(x,p(t)) constitutes an abstract vector shift. Using (2) the attacker may
assumes: g(x,p(t)) can be considered as an unknown scalar β ∈ R and s(x,p(t))
being the most crucial part, since the real architecture is not known. Yet, a
common realization considers s(x,p(t)) as a Euclidean vector shift [3] giving
the ansatz ũ(t) = β · (x− p(t)). Thus, an attacker can assume

∆p ≈ σ · ϵ · β · (x− p(t)) = σ · ϵ · ũ(t) (3)

as a valid approximation of the unknown update vector u(t). In this way, an
attacker already has a guess of the learning scheme structure constituted by the
user and the server, while the approximative behavior is caused by the unknown
realization of s(x,p(t)) which could also be realized in terms of a linear mapping
as for example in [5, 6]. The attacker then proceeds by using ũ(t) to attempt the
reconstruction of the data necessary to create u(t). Note, that the summary (3)
yields that σ and ϵ are added on the server-side. However, as in [4] considered,
these parameters could also be incorporated into the design of g(x,p(t)) on
the user-side and thus also in β, as for example in LVQ [7]. Nevertheless, the
reconstruction approach shown in 2.1 can be considered to be independent of
these parameters.

2.1 Reconstructing Data Samples and Guessing the Update Scheme

Using the approximation (3) and the respective assumed expression ũ(t) for
the given update vectors u(t) ∈ U(t), the attacker can now attempt the recon-
struction of the used data sample x to generate u(t): Given p(t) ∈ P(t) , such

82

ESANN 2024 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence and 
Machine Learning.  Bruges (Belgium) and online event, 9-11 October 2024, i6doc.com publ., ISBN 978-2-87587-090-2. 
Available from http://www.i6doc.com/en/.  



that for the respective update vector u(t) ̸= 0 holds, we consider a numerical
reconstruction approach similar to [1]

β∗,x∗ = argmin
β∈R,x̄∈Rn

∥u(t)− ũ(t)∥2 = argmin
β∈R,x̄∈Rn

∥u(t)− β · (x̄− p(t))∥2 (4)

which can be realized as a simple gradient based optimization problem with
∥ · ∥2 being the squared L2 norm, such that ũ(t) = β∗ · (x∗ − p(t)) is the
approximation of u(t) with x∗ being the reconstructed data sample and β∗ the
estimated gain g(x,p(t)). Yet, it is likely that the attacker obtains multiple
reconstructions, since it is common, that multiple prototypes receive an update
during a training step [3, 4]. Nevertheless, with the considerations in section 2.2
it becomes possible to verify the obtained results.

2.2 Exposing the Update Scheme and Verifying Reconstructions

The attacker may expose extended informations due to the transparent nature of
(2). Assuming, the attacker calculates for some stored p(t) ∈ P(t) the difference
vector δp(t) = p(t + 1) − p(t) together with its updated version p(t + 1) ∈
P(t + 1), such that for the corresponding update vector u(t) ̸= 0 holds. The
sign information can then be recovered by considering

min
(
∥n−∥2, ∥n+∥2

)
(5)

with n± = δp(t) ± u(t) and ∥ · ∥2 as in (4). A matching of the results of (5)
across all pi(t) ∈ P(t), for which ui(t) ̸= 0 is valid, then indicates which update
scheme is used. In the case of n+ being the regarding result, the update scheme
is likely to correspond to gradient descent with U(t) containing the respective
gradients, while n− yields gradient ascent. Nevertheless, assuming the result
of (5) differs across the prototypes, the sign σ is likely to be adjusted on the
User-side by g(x,p(t)) [4].

Taking into account the above discussion, the attacker may proceed to use
these informations by verifying the obtained results of the reconstruction. Exem-
plary, suppose gradient descent is used as determined above and the estimated
gains β∗

j from the reconstruction (4) differ in sign. In this case, the most im-
portant reconstructions x∗

i correspond to the estimated gains for which β∗
i < 0

is valid. Due to the transparent nature of VQ and (2), a negative gain in an
gradient descent scheme corresponds to attraction of the prototype [3, 4, 8].
Consequently, for this hypothetical scenario, the attacker could leak class in-
formation, while also gaining a measure of the goodness and importance of all
reconstructions obtained. Note, that the same argumentation is also valid for
User-adjusted signs in which the gain is responsible for the attraction-repelling.
To, however, show this also empirically, we considered in section 3 a prototype-
based classifier which makes use of the attraction-repelling scheme, i.e. using
gains which differ in sign.
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3 Experiments

For our case example, we considered the prototype-based classifier GLVQ [8]
with the cost-function

C =
∑
i

sgdθ

(
d(xi,p

+)− d(xi,p
−)

d(xi,p+) + d(xi,p−)

)
(6)

with sgdθ(·) being the sigmoid-function with parameter θ (here θ = 0.25), d(·)
the squared euclidean distance and p+ (p−) being the nearest prototype with
matching (not-matching) class and the respective updates u± being derived as
the gradients of C. The classifier was trained on a subset of the MNIST1 dataset
(1000 samples) for 100 epochs in a stochastic gradient descent (SGD) manner
and with one prototype per class for a classification task. We used no feature
extraction, but the samples were normalized into the range [0, 1].
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Real Image Epoch 19 MSE: 0.2848 and SSIM: 0.1162 MSE: 0.2673 and SSIM: 0.1414

Real Image Epoch 97 MSE: 0.0001 and SSIM: 0.9662 MSE: 0.0012 and SSIM: 0.8181

Fig. 1: Top-Left: Performance in terms of MSE and determined prototypes p±; Top-Right:
Performance in terms of SSIM; Bottom: Examples of the reconstruction for an early (19) and
later (97) epoch in model training

The reconstruction in (4) was executed within each epoch of the models training

1https://www.openml.org/d/554 - version 1
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for a randomly chosen image by using ADAM with the default parameters [9]
as the optimization method for 105 steps2. The performance is evaluated by
recording themean squared error (MSE) and structural similarity index measure
(SSIM) between the reconstructed image and the true image.

As in Figure 1 depicted, the measurements of MSE and SSIM are 2-fold. Fol-
lowing the above discussed approach in section 2.2, we first determined the sign
via (5) and evaluated the result against the signs of the estimated gains. When
the determined sign was negative across all prototypes pj for which ui ̸= 0 was
valid, we fixed pi = p+ whenever β∗

i < 0 and vice versa for p−. Anyway, the
results indicate, that the performance increases as the adaptation of the proto-
types to the data is improved. This is a somewhat expected behavior, since the
prototypes in the assumed shape ũ(t) of the update vectors already leak partial
information for the search space of the reconstruction. Consequently, salting the
prototypes by adding random noise would only increase the time needed for a
good reconstruction, but sophisticated evaluations of counter measures are left
for future works and the reader is referred to [10, 11] for related discussions.
Nevertheless, although, the results of the guessed p+ often outperform the ones
for p−, deviations in the later stages of the models training may be caused by
interactions of: the limited number of steps to optimize (4), adversarial pertu-
bations [1] and the robustness of GLVQ [12]. In other words, a correct classified
data sample may be faster reconstructed from p+, while an insecure (w.r.t. the
model itself) or misclassfied sample may be faster reconstructed from p−. How-
ever, a profound evaluation and discussion of such effects are out of the scope of
this work and left for future considerations.

4 Summary and Remarks

The results for the 1-User scenario indicate that the updates for VQ models
carry significant data information which, due to VQ’s transparent nature, could
rather easily be exposed. Moreover, a potential attacker may be free of assuming
a specific model, as we showed here for GLVQ and the attack being based on (3).
Nevertheless, future research may also take into account various abstractions of
the shift or understand VQ in terms of neural networks as in [13, 14] to be in
agreement with [1].
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