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Abstract. In aircraft engine monitoring, estimating performance indi-
cators from observed measurement data has been an important and long-
standing subject, as these indicators provide highly beneficial information
to assist maintenance activities. The two main resolution approaches in
tackling this problem are Bayesian inferences and machine learning meth-
ods, each having its own limitations: inferences are not robust against
model-reality gap and non-linearity, while current implementations of ma-
chine learning algorithms do not take into account temporal information.
In this work, we focus on a use case in estimating engine performance indi-
cators from snapshot data. We explore several hybrid approaches, aiming
to simultaneously leverage the advantages of Bayesian inferences and ma-
chine learning methods. We demonstrate that the estimation precision
provided by one of our hybrid methods significantly improves upon that
of state-of-the-art methods in the tested cases.

1 Introduction

In aeronautics, monitoring engine performance plays a crucial role in the devel-
opment of predictive maintenance and prognostic activities [1]. In particular,
estimating performance indicators from operational data is amongst the most
popular subjects of study.

In this work, we focus on a use case of aircraft engines’ performance esti-
mation, which revolves around two well-used types of performance indicators:
modular efficiencies and modular corrected air mass flow rates [2]. Instead of
directly calculating these indicators , the dominant perspective in the literature
is to leverage existing physical forward models. These models are typically ther-
modynamic simulators that map performance state (i.e., values of efficiencies
and flow rates) to selected measurements at certain stable operating conditions.
As a consequence, given a real dataset of sensor measurements, estimating per-
formance indicator values is then considered as an inverse problem of the chosen
forward model. In the sequel, we refer to this as the engine performance
inverse problem. A real-life example is provided in Table 1.
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Table 1: A performance inverse problem of a turbofan engine (from left to right)
and its associated forward model (from right to left). Notation: n = efficiency,

I' = air mass flow rate, Turb = Turbine.
6 measurable quantities
Core rotation speed (N2)
Compressor inlet temperature (T25)
Compressor outlet temperature (T3)
Exhaust gas temperature (EGT)
Compressor outlet pressure (PS3)
Combustion chamber fuel flow (WF)

10 performance indicators
n, I' Fan

n, I' Booster

n, I' Compressor

n, I' Low-pressure Turb
n, I' High-pressure Turb

T

The two main approaches dominating the state-of-the-art of engine performance
inverse problem on in-service data are: filtering-based methods [3] and machine
learning (ML) oriented methods [4, 5]. While filters take into account tempo-
ral information and are theoretically optimal in linear cases, they fall short in
highly non-linear systems and are non-robust in cases with high model-reality
gaps [6, 7). On the other hand, machine learning techniques, notably neural
networks, can be fit to (simulated) dataset generated by thermodynamic sim-
ulators to learn the mapping between measurements and performances. Once
fully trained, ML-models can quickly estimate performance indicators; however,
current implementations only provide point-by-point estimations and only work
well if noises in real data are mild enough with respect to the training simulated
data. Note importantly that none of the two state-of-the-art approaches have
completely resolved the so-called under-determined scenario often encountered
in practice, where the number of to-be-estimated indicators is higher than the
dimension of observed measurements.

Challenges. In this work, we focus on a use case of monitoring the perfor-
mance of a turbofan engine, as described in Table 1. This problem is challenging
due to its under-determination nature. Even by following recent developments of
the state-of-the-art, we find that both Kalman filters and neural networks have
not achieved desired performance in this use case. From this starting point, we
pose the following research question: “Can a hybrid usage of Kalman filters and
neural networks improve the precision in estimating performance indicators?”

Contributions. In this work, we investigate several hybrid approaches of
Kalman filters (KF) and neural networks (NN) in the engines’ performance
inverse problem. First, we establish two simulated datasets corresponding to
two degradation scenarios: a linear degradation and a non-linear degradation
with maintenance recoveries. We then establish three hybrid approaches: (i)
NN_UKF method: using KF as a downstream component to filter out NN’s es-
timations; (ii) UKF_NN method: using KF as an upstream component to filter
out noises in sensors measurements before fitting, as input, to NN models and
(#ii) UKF_with NN method: additionally concatenating NN’s estimations as arti-
ficial measurements of a KF. We conducted a series of experiments using these
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three hybrid approaches and compared their performances with the baseline al-
gorithms (non-hybrid KF and non-hybrid NN). We demonstrate the improve-
ments given by these hybrid methods; in particular, the UKF_with NN method
shows a superiority in performance.

Related Works. Besides the two approaches introduced above, the literature
of the engine performance inverse problem also includes a traditional method
called gas path analysis (GPA) [8, 9] which relies on direct optimization. How-
ever, GPA is theoretically impossible in under-determined cases. Moreover, there
exist several hybrid approaches. For example, Volponi et al. [10] use NNs to
predict residuals between outputs of a given inference and observed measure-
ments (at a pre-determined set of flight conditions); this prediction is used to
calibrate the a priori models (that can be used in another inference). Another
hybrid usage of NN is proposed by Kobayashi et al. [11] but it is combined with
genetic algorithms instead of filters.

2 Problem Statement and Methods

2.1 Problem Statement

We consider an engine system and represent the value of its performance indi-
cators by 6 (we also call § the health state of the engine). Corresponding with 6
and an operational condition u (i.e., either Cruise, Take-off or Climbs), the en-
gine gives a measurement y (possibly influenced by unknown noises). We focus
on the following problem: given a time series of data points y¢,t = 1,...,T that
are measured at some known conditions u, we aim to retrieve all 0;,t =1,...,T
corresponding to y; and u. Importantly, to solve this problem, we assume a
thermodynamic simulator S that gives simulated measurements § = S(6, u).

In this work, we focus on a use case having data from 4 pre-determined
operating conditions. For this reason, in the sequel, we simplify the notation and
omit u in all formulas; for example, we write § = S(#) and implicitly understand
that y being the concatenated outputs at these 4 operating conditions.

2.2 Non-hybrid versus Hybrid Methods

Kalman Filter (KF). Intuitively, KF intends to solve inverse problems by
combining an a priori model of propagation and the observed measurements.
The a priori model predicts measurements with the help of a measurement model
(e.g., a simulator), and the difference between such predictions and real mea-
surements allows the filter to correct the current estimation of #. In this work,
we focus on a non-linear version, the Unscented Kalman Filter (UKF) and use
it as our first baseline non-hybrid method. The main parameters to be tuned in
our usage of UKF are Q—the covariance of the a priori propagation model, and
R—the covariance of the measurement noises.
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Figure 1: The considered hybrid models in comparison with standard non-
hybrid methods.

Neural network (NN). Following the typical pipeline of applying NN in the
literature of engine performance inverse problems, in this work, we construct
the experiments involving NN as follows: we generate a dataset of two millions
different pairs (performance indicators, measurements) with a simulator, then
train a dense network containing 3 layers of size 100 with mean squared error
loss on this dataset to learn the inverse function.

Hybrid methods. In this work, building upon the two aforementioned ap-
proaches, we construct three different hybrid methods aiming to obtain a best-
of-both-world results. We investigated three approaches: NN_UKF, UKF_NN and
UKF_with NN, as described in Section 1 and Figure 1. Note that technically,
one can replace NN by other regression methods (such as random forest or gra-
dient boosting); however, in our tests, we observe that NN outperforms other
regressors by a large margin, hence, we only focus on hybrid methods with NN.

3 Experiments and Results

Data generation. We present 2 setups of engine degradation: (i) the “linear
scenario” where 6, decreases linearly through time and (%i) the “with-maintenance
scenario” where maintenance processes cause sudden recoveries in 6;. In partic-
ular, in the first setup, we choose a degradation trajectory, where each perfor-
mance indicators has a different degradation speed, representing 10000 flights
(as a standard life for an aircraft engine). After each 100 flights, we simulate
the measurements associated with the corresponding values of performance in-
dicators (and 4 pre-determined operating conditions). We then add a zero-mean
Gaussian noise to each measurement representing sensors’ noises. Secondly, in
the with-maintenance scenario, every 1000 flights, we simulate a maintenance
recovery, randomly drawn from a Gaussian distribution around average recover-
ies observed in practice, while the degradation between these maintenance times

546



ESANN 2024 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 9-11 October 2024, i6doc.com publ., ISBN 978-2-87587-090-2.
Available from http://www.i6doc.com/en/.

Metric (Trajectory Error, Slope Error)

Setup Linear With Maintenance

Rank 1 2 3 4 5 1 2 3 4 5
UKF_with NN | (9,4) (6,8) €0,3) (0,0) (0,0) 8,7) (6,6) 0,2) (0,0) (0,0)
UKF (6,6) (9,4 (0,5) (0,0) (0,0) | (6,5) (8,7) 0,2) ©,1 (0,0)
NN_UKF (0,5 (0,3 (15,7) (0,0) (0,0) | (1,1) (0,1) (14,10) (0,3) (0,0)
NN (0,0) (0,0) (0,00 (15,0) (0,15) | (0,2) (1,0) (0,1) (14,0) (0,12)
UKF_NN (0,00 (0,00 (0,0) (0,15) (15,0) | (0,0) (0,0) (0,1) (0,11) (15,3)

Table 2: Couplings showing ranks, by trajectory and slope errors, of each method
in the considered setups. E.g., in linear scenarios, UKF_with NN ranks first (hav-
ing smallest errors) 9 times with trajectory errors and 4 times with slope errors.

is also linear. For each of these setups, we generate 5 datasets at random.

Evaluation methodology. Dealing with time series estimations, we choose to
work with two metrics : (i) the trajectory error which accumulates the absolute
error between true state and estimation, and (%) the slope error which accumu-
lates the differences between estimated slopes and the true slopes with a sliding
window of fixed sizes. We fix a specific value of @ (an identity matrix multiplied
by a coefficient of 10~7,1078 or 107%) for UKF as a benchmark then compare
with other hybrid methods with the same @.! We then report each algorithm’s
performance in the 15 cases (5 datasets and 3 values of ) for each dataset).

Moreover, NN_UKF and UKF_with NN require an assessment on uncertainty for
NN’s estimations. This uncertainty is dictated by a covariance matrix called
Ryy. We observe that while the performance of hybrid methods varies with Ryy,
there is a large interval where it works well (hence, we do not specify the value
of Ryy here).

Results. In Table 2, we summarize the results of our experiments by rank-
ing the algorithms’ performances in the considered 15 tested cases. Overall,
we observe that UKF_with NN outperforms non-hybrid approaches, with inter-
esting gains in both considered setups (with and without maintenance). This
is also demonstrated in Figure 2. Second, NN_UKF is not competitive enough
to surpass non-hybrid UKF, but achieves an improvement in comparison to the
tested non-hybrid NN model. Third, UKF_NN fails to surpass non-hybrid UKF
but outperforms the non-hybrid NN method in the slope error metric.

Despite its inferior performance, NN_UKF should not be dismissed right away
since its performance might be boosted by a more robust predictor and more
scenarios should be investigated where UKF is less favored (such as severely
non-linear cases). The under-performance of UKF_NN might correspond to the
phenomenon observed in [5]: adding noises might improve performances of the
neural networks; however, the level of added noises should match that of mea-
surements.

I'While the assumption of identity matrix in building Q is rather limited, it is enough for
the purpose of comparing between different methods in our tests without enforcing too much
(unrealistic) a priori knowledge.
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Figure 2: The trajectory error (in logarithmic scale) of considered algorithms in
the with-maintenance scenario showing UKF_with NN is the best algorithm most
of the time (comparing between algorithms using the same value of matrices Q).
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