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Abstract. In this work, we introduce ProtoNCD, a novel approach
to novel class discovery (NCD) that leverages prototypical parts for en-
hanced interpretability. ProtoNCD extends the ProtoPool methodology
to the NCD setting, employing techniques such as knowledge distillation
and specialized prototypical parts initialization. Through comprehensive
experiments on the CUB-200-2011 dataset, we demonstrate the efficacy of
ProtoNCD and its pivotal role in explaining how the reasoning of known
classes influences predictions for those newly discovered.

1 Introduction

Novel Class Discovery (NCD) addresses the challenge of requiring large anno-
tated datasets for deep learning models. It aims to train a network capable of
classifying known classes and leveraging this supervision to identify and cate-
gorize new classes within unlabeled data [1]. Existing NCD methods [2, 3] are
effective, but their lack of interpretability can undermine trust, especially in
high-stake applications such as criminal justice and medicine [4]. Transparency
can be achieved through post-hoc methods [5], which explain decisions after de-
ployment, or ante-hoc methods, which embed interpretability directly into the
model design [6, 7]. However, the latter is preferable because they are more
precise [4], and among them, those based on prototypical parts [7, 8, 9, 10, 11]
due to the ease of interpreting their predictions.

Nevertheless, although interpretable methods have been extensively devel-
oped, they have not yet been applied to enhance the interpretability of NCD
setups. In this paper, we fill this gap by introducing ProtoNCD, an inter-
pretable architecture for novel class discovery. Interpretability is achieved by
applying prototypical parts to both labeled and unlabeled classes. First, the
model learns prototypical parts for labeled classes through standard supervised
training. Then, in the discovery stage, the model can use previously trained pro-
totypical parts or learn new ones for the unlabeled classes. As a result, we can
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Fig. 1: In ProtoNCD, predictions for novel classes rely on prototypical parts
generated for labeled and novel classes. In this example, novel class 1 and
novel class 2 use two prototypical parts each. Two of them are reused from
prototypical parts of labeled classes (green wing and blue head), and two others
are prototypical parts created in the discovery phase (purple beak and red belly).
This way, we can discover similarities between known and new classes and, in
consequence, detect biases in the model or discover new knowledge.

interpret the decisions of the model but also discover similarities and differences
between known and novel classes (see Fig. 1).

Our contributions can be summarized as follows:

• We introduce the ProtoNCD, the first approach to interpretable novel cat-
egory discovery.

• ProtoNCD explains how the reasoning of known classes influences predic-
tions for those newly discovered.

• We conduct extensive experiments on CUB-200-2011 to demonstrate the
effectiveness of our method.

2 Method

Preliminaries. In the Novel Class Discovery (NCD) task, the training dataset

is divided into two parts: a labeled set Dl =
{
(xl

i, y
l
i)
}|Dl|
i=1

containing im-

ages with known labels, and an unlabeled set Du =
{
xu
j

}|Du|
j=1

used to iden-

tify Cu novel classes. The labels yli belong to a set Y l =
{
1, . . . , Cl

}
, and

it is assumed that the labeled and unlabeled classes are disjoint. The objec-
tive is to learn a mapping that classifies images into a complete set of labels
Y =

{
1, . . . , Cl, Cl + 1, . . . , Cl + Cu

}
, which includes both known and novel

classes.

ProtoNCD. We utilize a standard framework for NCD that includes an encoder,
represented as f , and two classifier heads: cl for existing classes and cu for novel
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Fig. 2: Overview of the ProtoNCD with the upper part (grey) representing a
fixed pretrained model used for distillation, and the lower part corresponding to
two trainable heads with known (cSl ) and novel (cSu) classes.

classes (Fig.2). Each classifier head consists of a prototypical parts pool layer g,
introduced in [10], and a fully connected layer h. The representation from the last
convolution layer of the encoder is compared with prototypical parts designated
for specific classes. This comparison is used to calculate the similarities that are
then passed to a fully connected layer to generate logits. The logits from both
classifier heads are combined to form the final prediction distribution

dS(y | x) = Softmax
((
hS
l ◦ gSl ◦ fS(x)⊕ hS

u ◦ gSu ◦ fS(x)
)
/τ

)
∈ RCl+Cu

,

where the superscript S indicates the model during its discovery training phase
and τ refers to the temperature.

The training process consists of two stages. In the first stage, supervised
training is performed on known classes, optimized with standard cross-entropy,
and three other losses: clustering, separation, and orthogonality that encourage
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proper prototype creation and assignment [8]. In the second phase, the novel
classes are assigned to pseudo labels by solving an optimal transport problem [2].
The knowledge distillation loss (LrKD) is also used to distill the knowledge from
the model prepared in the previous stage with additional adaptive regularization
term (r) that stabilizes noisy predictions of the novel class data [3].

3 Experiments and results

Experimental setup. The method is evaluated on the fine-grained dataset CUB-
200-2011 [12]. The dataset’s classes are equally split into known and novel, ac-
cording to [13]. The task-agnostic protocol is used [2], where the prediction is
indicated by the highest value after concatenating logits from labeled and unla-
beled heads. Predicted labels are assigned with the Hungarian method [14]. The
ResNet50 [15] pretrained on iNaturalist [16] is used as the backbone, and the
supervised training is performed according to [10] with the following exceptions.
Since the model is trained on 100 classes, only 101 prototypes are used. Also,
as suggested by [17], the last layer remains unaltered after the prototype projec-
tion phase. In the discovery stage, 101 additional prototypes are introduced to
account for the characteristics present in novel classes. These prototypes, their
probability distributions, and the fully connected layer in the unlabeled head
are the only newly initiated objects in the discovery setting (see Fig.2). All the
others are initiated by the corresponding values from the model prepared in the
initial stage. Furthermore, the model parameters used for distillation are fixed
during training. The code is available online1.

Table 1: Comparison with state-of-the-art methods on the CUB dataset for
novel class discovery in task-agnostic evaluation protocol. ProtoNCD is the first
interpretable NCD method with performance at the level of the leading non-
interpretable approaches.

Method Interpretable Known Novel All
NCL[18] ✗ 79.8 13.1 46.3

RankStats+[1] ✗ 80.7 51.8 66.1
UNO[2] ✗ 78.7 62.1 70.3
CRKD[3] ✗ 80.5 66.1 73.3

ProtoNCD (ours) ✓ 74.2 44.7 59.4

ProtoNCD performance. In Table 1, we evaluate ProtoNCD for novel class dis-
covery against leading non-interpretable NCD methods. ProtoNCD achieves an
accuracy of 74.2% for known classes and 44.7% for novel classes, resulting in
an overall accuracy of 59.4%. While ProtoNCD surpasses method NCL [18] in
novel and overall accuracy, it achieves worse results than the remaining meth-
ods, such as CRKD [3]. The emphasis on interpretability in model design causes

1https://github.com/michalskit/ProtoNCD
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Table 2: Ablation study with the first row corresponding to ProtoNCD. Note
that “Random” and “Copy” refer to initializing novel prototypical parts ran-
domly or as a copy of known prototypical parts, “GN” corresponds to Gaussian
noise, and “ICICLE” to similarity regularization [17].

Distillation
Frozen

Pretrained
Prototypes

Extra
Prototypes
Initialization

Accuracy

Known Novel All
KD ✓ Copy+GN 74.2 44.7 59.4
KD ✓ Random 71.5 40.8 56.1
KD ✗ Copy+GN 73.3 37.7 55.4
KD ✓ Copy 73.7 36.4 54.9
✗ ✓ Copy+GN 69.2 36.1 52.6

KD+ICICLE ✗ Copy+GN 75.6 34.7 55.0

this performance trade-off, particularly in novel class identification. By prioritiz-
ing understandability and transparency, our model sacrifices some performance
compared to purely performance-focused, non-interpretable methods.

In our ablation study, presented in Table 2, we delve into the rationale be-
hind our design decisions. ProtoNCD performs best across all accuracy met-
rics (the first row). Conversely, random initialization of additional prototypical
parts, as in [10], yields notably inferior results. Similar declines are observed
when pretrained prototypical parts are not frozen or when distillation techniques
are omitted. Furthermore, we observe that using interpretability distillation
(KD+ICICLE) from [17] is detrimental.

shared 
prototypes

Known classdistinct
prototype

Novel class distinct
prototypes

Hooded oriole Scarlet tanager

Canada warbler

Fox sparrow Henslow sparrow

Philadelphia vireo

Fig. 3: Sample known and novel classess with shared and distinct prototypical
parts.
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Interpretability results. ProtoNCD identifies which prototypical parts are shared
between the known and novel classes. Therefore, it is possible to identify similar
characteristics between them. As illustrated in Fig.3, the novel class, the Scar-
let tanager, is characterized by shared prototypical parts with the known class,
the Hooded oriole, including the black wings and forked tail. Simultaneously,
distinct prototypical parts capture class-specific features, such as the striking
gradient transition from the bright orange of its back to the deep black of its
upper head and the rich redhead with a sharp, conical bill of the Scarlet tanager.
Such observations can be crucial to detect biases in the model but also can be
used for knowledge discovery.

4 Conclusions

In conclusion, our work introduces ProtoNCD, an interpretable approach to
NCD that effectively identifies new classes within an unlabeled subset of the
CUB-200-2011 dataset. Despite a slight accuracy trade-off compared to non-
interpretable counterparts, the interpretability of its classification process justi-
fies its performance and paves the way for future advancements in interpretable
NCD methods.
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