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Abstract. Pruning neural networks (NNs) can streamline them but risks
removing vital parameters from safe reinforcement learning (RL) policies.
We introduce an interpretable RL method called VERINTER, which com-
bines NN pruning with model checking to ensure interpretable RL safety.
VERINTER ezactly quantifies the effects of pruning and the impact of
neural connections on complex safety properties by analyzing changes in
safety measurements. This method maintains safety in pruned RL policies
and enhances understanding of their safety dynamics, which has proven
effective in multiple RL settings.

1 Introduction

Reinforcement learning (RL) has transformed technology [1]. An RL agent
learns a policy to achieve a set objective by acting and receiving rewards and
observations from an environment. A neural network (NN) typically represents
the policy, mapping environment state observations to action choices. Each
observation comprises features characterizing the current environment state [2].
Unfortunately, learned policies are not guaranteed to avoid unsafe behav-
ior [3], as rewards often do not fully capture complex safety requirements [4].
For example, an RL Taxi policy trained to maximize its reward for each passen-
ger transported to their destination might not account for possible collisions.
To resolve the issue mentioned above, formal verification methods like model
checking [2] have been proposed to reason about the safety of RL [5, 6, 7, 8].
Model checking is not limited by properties that can be expressed by rewards
but supports a broader range of properties that can be expressed by probabilistic
computation tree logic (PCTL) [9]. At its core, model checking uses mathemat-
ical models to verify a system’s correctness concerning a given safety property.
Despite progress in applying verification to RL, the complexity of NNs still
hides crucial details affecting safe decision-making [10]. This highlights the need
for research on interpretable and safety-focused RL methods to enhance safe
decision-making and promote responsible and interpretable RL development.
Pruning methods trim NN connections to analyze their impact on perfor-
mance [11]. Yet, they lack a focus on safety.
Therefore, by integrating model checking and NN pruning, we propose a novel
method named VERINTER (VERify and INTERpret) to exactly interpret neu-
ron interconnections within NN policies concerning safety measurements. Ad-
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ditionally, VERINTER can be used as a safety-conscious pruning technique to
eliminate unimportant connections from the NN while maintaining safety.

VERINTER takes three inputs: a Markov Decision Process (MDP) repre-
senting the RL environment, a trained policy, and a PCTL formula for safety
measurements. We incrementally build only the reachable parts of the MDP,
guided by the trained policy [2]. We then verify the policy’s safety using the
Storm model checker [12] and the PCTL formula.

In the case of a safety violation of the pruned RL policy, for instance, a
collision likelihood above 1%, we can extract the information that the pruned
interconnections are essential for safe decision-making. Otherwise, we may be
able to prune more interconnections, only leaving the essential interconnections
for safety.

Pruning an input neuron’s connections removes its feature from decision-
making, revealing its impact. For instance, if pruning the passenger sensor leads
to significant changes like running out of fuel in a taxi RL scenario, it highlights
its critical role in safe decision-making for the trained RL policy.

Our main contribution, VERINTER, safely prunes NN policies with for-
mal verification, measures the impact of specific features and NN connections
on safety, and is applicable across multiple benchmarks. This study tries to
bridge the gap between formal verification and interpretable RL, creating a uni-
fied method for safe and interpretable RL policies.

Related Work Formal verification methods for RL policies are developed [5, 6,
7, 8, 13, 14] and RL policy pruning exists [15, 16, 17]. VERINTER differs by
combining both formal verification and pruning in one interpretable RL method
in the context of RL safety, accessing the impact of NN input features and
connections on safety. Gangopadhyay et al. prune NN policies focusing on
reachability while we exactly verify complex safety PCTL properties and set them
into the context of interpretable RL. COOL-MC is a tool that verifies whether
a policy violates a safety requirement or not [2]. We enhance COOL-MC by
integrating it with VERINTER.

2 Background

Probabilistic model checking. A probability distribution over a set X is a func-
tion p: X — [0,1] with >y p(xz) = 1. The set of all distributions on X is
denoted Distr(X).

Definition 1 (MDP). A MDP is a tuple M = (S, so, Act, Tr,rew, AP, L) where
S is a finite, nonempty set of states; so € S is an initial state; Act is a finite set
of actions; Tr: S x Act — Distr(S) is a partial probability transition function;
rew: S X Act — R is a reward function; AP is a set of atomic propositions;
L: S — 247 is q labeling function.

We employ a factored state representation where each state s is a vector of
features (f1, fa, ..., fa) where each feature f; € Z for 1 <i < d (d is the dimension
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of the state). The available actions in s € S are Act(s) = {a € Act | Tr(s,a) #
1} where T'r(s,a) # L is defined as action a at state s does not have a transition

(action a is not available in state s). An MDP with only one action per state
(Vs € S :]Act(s)] = 1) is a discrete-time Markov chain (DTMC) D.

Definition 2 (Policy). A memoryless deterministic policy for an MDP M is a
Sfunction w: S — Act that maps a state s € S to action a € Act.

Applying a policy 7 to an MDP M yields an induced DTMC D where all non-
determinism is resolved. Storm [12] allows the verification of PCTL properties
of induced DTMCs to make, for instance, safety measurements.

RL. The standard learning goal for RL is to learn a policy 7 in an MDP such
that 7 maximizes the accumulated discounted reward, that is, E[Zivz oV Ry,
where v with 0 < v < 1 is the discount factor, R; is the reward at time ¢, and
N is the total number of steps. In RL, an agent learns through interaction with
its environment to maximize a reward signal [10].

NN policy pruning. A NN with d inputs and |Act| outputs encodes a function
f: R4 — R4l Formally, the function f is given in the form of a sequence
V_V(l), .. .,W(k) of weight matrices with W ¢ Réxdi-1 for all ¢ = 1,...,k.
Pruning a weight Wi(f) sets it to zero, eliminating the connection between neuron
1 in layer k and neuron j in layer k + 1.

We focus on the following types of pruning: [;-pruning removes a specific
fraction p of the weights V_[’/i(f) starting with those of the smallest /;-magnitude
in layer k; Random pruning randomly eliminates a fixed fraction p of weights
Wgc); Feature pruning cuts all outgoing connections v i(jl) from a neuron linked
to a specific NN policy observation feature f;.

3 Methodology

We introduce VERINTER’s workflow, where we first incrementally build the
induced DTMC of the policy 7 and the MDP M as follows. For every reachable
state s via the trained policy m, we query for an action a = 7(s). In the under-
lying MDP M, only states s’ reachable via that action a € A(s) are expanded.
The resulting DTMC D induced by M and 7 is fully deterministic, with no
open action choices, and is passed to the model checker Storm for verification,
yielding the ezxact safety measurement result m.

Next, the pruning procedure eliminates connections W within the NN based
on predefined criteria and verifies the induced DTMC D of the pruned policy &
and the MDP M to obtain the measurement result /m. Our framework remains
independent of the specific pruning method used.

Then, with the completion of the pruning process, we can examine the dif-
ference between m and m to evaluate the relevance of the pruned connections.
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Fig. 1: Pruning methods across three Taxi events. The x-axis shows the percent-
age of pruned weights in the input layer, and the y-axis indicates the reachability
probability of specified events (in brackets). Random pruning sample size: 10.

Safety feature pruning A feature f; is important for an RL policy = and a
specific measurement if its removal impacts policy safety. For instance, if all
outgoing connections from the input layer receiving feature f; are pruned, re-
sulting in a pruned RL policy 7, we can assess if f; is crucial for safety per-
formance. In a taxi scenario where a passenger sensor is removed, and safety
performance remains unaffected, such as the likelihood of running out of fuel
remaining unchanged, we deduce that this feature does not influence this safety.

Limitations Our method supports memoryless NN policies within modeled
MDP environments, only limited by state space and transition count [2]. VER-
INTER remains independent of the pruning method.

4 Experiments

We evaluate VERINTER in multiple model-based environments from [2] ( Tax,
Freeway, Crazy Climber, Avoidance, and Stock Market). Experiments involve
training RL policies using the deep Q-learning algorithm [1], achieving high
safety success across the environments. The Taxi policy maintains non-empty
full status, completes two jobs, and reaches a gas station with 100% success; the
Freeway policy crosses 100% of the time safely; the Crazy Climber policy avoids
falls; the Awoidance policy prevents collisions 68% of the time; and the Stock
Market policy avoids bankruptcy.

Comparative analysis of pruning methods. This experiment compares two prun-
ing methods on W), highlighting the model-agnostic nature of our method.
In Figure 1, l;-pruning removes more connections than random pruning while
maintaining initial safety performance. Random pruning lacks consideration of
connection weight, risking the removal of crucial connections and causing rapid
performance degradation. Therefore, different pruning methods uniquely affect
safety measurements due to varying connection pruning strategies.
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ing two jobs. senger and then visiting a gas station.

Fig. 2: Each subfigure shows safety measurements for different NN layers, with
the x-axis representing the percentage of pruned connections and the y-axis
showing safety outcomes in the Taxi environment.

Environment Measure Label Orig. Result Pruned Feature Result

Taxi jobs =2 1 passenger_locx 1
Freeway crossed 0.99 pzxo 0.98
Crazy Climber no_fall 0 px 0
Avoidance no_collisionioo 0.68 =« 0.25
Stock Market no_bankruptcy 1 sell_price 1

Table 1: Safety feature prunings. The Measure Label refers to the safety measure.
The Orig. Result and Result show the probability of conformance to the safety
measure before and after pruning of the input feature Pruned Feature.

Effect of pruning different layers. We examine how pruning different layers of
a trained NN policy affects safety in the Taxi scenario. We focus on safety
measurements for completing two jobs (jobs=2) and the complex probability
measurement [4] of picking up the passenger before reaching the gas station
(pa_gas). In Figure 2, the pruning impact on safety does not consistently relate
to specific layers, suggesting no dominance of low-level layers over high-level
ones. Notable, pruning the first layer (shown by the blue line) slightly increased
the reachability probability of completing two jobs with around 42% of neurons
pruned, indicating that (further) pruning could enhance safety performance.

Safety feature pruning in different environments. Our method adapts to dif-
ferent RL environments, as shown in Table 1. The results vary; some pruned
features maintain safety, while others compromise it.

5 Conclusion

VERINTER integrates model checking with NN pruning to refine RL policies,
maintaining performance while identifying expendable features and NN connec-
tions. Future research could include multi-agent RL [18].
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