
CNNGen: A Generator and a Dataset for
Energy-Aware Neural Architecture Search

Antoine Gratia1, Hong Liu2, Shin’ichi Satoh2,
Paul Temple3, Pierre-Yves Schobbens1 and Gilles Perrouin1

1- NaDI, Faculty of Computer Science, University of Namur, Belgium
2 - Digital Content and Media Sciences Research Division,

National Institute of Informatics, Tokyo, Japan
3 - University of Rennes, IRISA, Inria, Rennes, France

Abstract.
Neural Architecture Search (NAS) methods seek optimal networks by ex-
ploring thousands of variants of a reference architecture. Yet, optimality is
typically related to prediction performance, overlooking the environmental
impacts of training. Thus, NAS search spaces are unfit for performance
and energy consumption trade-offs. We contribute to energy-aware NAS
with (i) a grammar-based Convolutional Neural Network generator (CN-
NGen) producing diverse architectures not based on a reference one; (ii)
1,300 available architectures obtained via CNNGen with their implemen-
tation, energy consumption and performance measurements; (iii) Three
state-of-the-art predictors releasing the need for trained models for perfor-
mance and energy estimation.

1 Introduction

Neural Architecture Search (NAS) seeks the best CNN architecture for a task [1],
solving an optimization problem over reference designs to find top-performing
ones. To validate optimization approaches, techniques like NASBench-101 [2]
provide datasets that benchmark thousands of architectures via cell-based gen-
eration. However, NAS’s resource-intensive nature significantly impacts the en-
vironment, focusing mainly on performance. We propose CNNGen(Section 2),
a grammar-based CNN generator exploring the search space without needing a
reference architecture. CNNGen automates model creation and training, offering
complete descriptions and reporting performance and energy metrics, supported
by three novel prediction models (Section 3).

2 CNN Generator (CNNGen)

CNNGen uses the Xtext context-free grammar framework [3] to generate CNN
architectures. The sequence of grammar tokens describes the CNN’s topol-
ogy (i.e., the succession of layers). Our grammar captures the CNN domain
knowledge to produce valid architectures. Thus, CNNGen differs from other
NAS methods like NASBench [2] Indeed, CNNGen produces architectures from
scratch and not as variants of existing ones. CNNGen also comes with an edi-
tor allowing to specify architectures. From a valid sequence of grammar tokens,

173

ESANN 2024 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 9-11 October 2024, i6doc.com publ., ISBN 978-2-87587-090-2.
Available from http://www.i6doc.com/en/.

CNNGen automatically transforms this specification into the model’s code using
the Keras Python framework. CNNGen’s grammar covers popular architectures
(e.g., LeNet, AlexNet, or ResNet) but can also yield unknown ones, allowing
for more diversity in the search space. Our companion repository1 describes
our grammar and shows some examples of generated architectures. CNNGen
computes the following metrics: accuracy, training time (in seconds), number
of epochs and training parameters, emissions (CO2-equivalents [CO2eq], in kg),
emissions rate (Kg/s), and total energy consumed (Kw). We use Code Carbon2

to calculate measurements related to energy consumption. We used CNNGen
to produce a benchmark of 1, 300 randomly generated CNN models. Finally,
for each generated model, we release its CNNGen grammar phrase (i.e., the
succession of grammar tokens), PNG image representation, and Python code
(using Keras). CNNGen source code and our benchmark are available on our
companion repository to ease reproducibility and reuse.

3 Predictors

NAS methods rely on predictors to optimize architectures [4–9]. Some require
retraining the models on new data to predict efficiency metrics, while others
estimate the performance of a given model solely based on its structure [4].
Considering the impact of training [10], being able to predict accurately the
performance of models without having to train is a step toward more sustain-
ability. Thus, we propose three prediction models for performance and energy
consumption that do not require trained models.
Our first predictor builds a relation between the graphical representation of
an architecture (i.e., a PNG image generated with a call to the Keras function
plot_model 3) and its classification performance. This graphical representation
contains the succession of layers (and their parameters) forming a CNN.
Our second predictor relies on the Python code generated by CNNGen to
run a specific CNN model based on its grammar phrase. This predictor focuses
on the different architectural layers and extracts their hyperparameters. The
goal here is to learn correlations between the layers and their hyperparameters
on the one hand and the architecture’s performance on the other hand.
Our third predictor relies on the Regressor Decision Tree and uses four (man-
ually defined) features: the number of layers in the model, the number of epochs,
the flops, and the number of parameters of the model.

4 Experiments

We evaluate the characteristics of our CNNGen benchmark, composed of 1, 300
models, relative to NASBench-101. This comparison focuses on performance and

1https://doi.org/10.5281/zenodo.11109244
2https://codecarbon.io/
3https://keras.io/api/utils/model_plotting_utils/

174

ESANN 2024 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 9-11 October 2024, i6doc.com publ., ISBN 978-2-87587-090-2.
Available from http://www.i6doc.com/en/.

https://doi.org/10.5281/zenodo.11109244
https://codecarbon.io/
https://keras.io/api/utils/model_plotting_utils/

energy consumption. In addition, we also evaluate the relevance of the predic-
tors described in Section 3. Due to space limitations, we provide a companion
repository 4 containing all evaluation results.

4.1 Experimental Settings

In our experiments, we randomly selected 1, 300 architectures from CNNGen
and trained them on CIFAR-10, CIFAR-100, and Fashion-MNIST datasets with
36 epochs5. The datasets are divided into 80% for training and 20% for test-
ing, with 20% training data used for validation. After training the different
models, we compared the predictors (see Section 3) in energy and performance
prediction tasks. We also added the Neural Predictor for Neural Architecture
Search [11] as a baseline. To evaluate the different predictors, our previously
trained architectures are split into 80% for training and 20% for testing, with
10% of the training set reserved for validation. We mitigate randomness effects
by repeating our training and evaluation on ten independent runs.

4.2 How does CNNGen compare to NASBench regarding perfor-
mance and energy distribution?

CNNGen and NASBench use different methods to generate architectures: CN-
NGen is a grammar-based approach, while NASBench relies on predefined cell-
based architectures. This difference influences the diversity of topologies gen-
erated by each method, with CNNGen potentially offering a wider range of
architectural structures tailored for image classification tasks. To assess perfor-
mance dispersion, we compare the accuracy distribution of architectures gener-
ated by CNNGen (1, 300 architectures) and NASBench (423, 000 architectures)
when evaluated on a test set. CNNGen architectures exhibit a broader range of
accuracies (40% to 68%) compared to NASBench (80% to 85%), as illustrated
by Figure 1. We conclude that CNNGen can produce a diversely performing
and energy-consuming set of models, which we see as a prerequisite for complex
trade-offs and generalizable predictors. NASBench-101 does not include energy
metrics and it is impossible to compute them because of the lack of information
to retrain such networks and the associated costs.

Figure 2 depicts the energy consumption distribution over the 1, 300 models.
For a given dataset, these diversified models (from 5 to 250 layers) have varied
energy consumption. Energy consumption is also logically dataset-dependent.

4.3 Performance of the energy/performance predictors

First, we want to compare the performance prediction (i.e., accuracy) of our
predictors before considering energy consumption prediction. We trained the
four different predictors on the performance reported by the CNNGen architec-
tures and we predict the performance for the remaining architectures. We use

4https://doi.org/10.5281/zenodo.11109244
5This is one of the NASBench-101 settings, chosen to allow comparison.

175

ESANN 2024 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 9-11 October 2024, i6doc.com publ., ISBN 978-2-87587-090-2.
Available from http://www.i6doc.com/en/.

https://doi.org/10.5281/zenodo.11109244

(a) (b)

Fig. 1: Distribution of accuracy of NASBench-101 models on CIFAR-10 (a) and
1, 300 models generated with CNNGen on CIFAR-10 (b) on the test set after
training models for 36 epochs.

(a) (b)

Fig. 2: Energy distribution for CIFAR-100 (a) and fashion-MNIST (b) over
1, 300 models generated by CNNGen and trained for 36 epochs.

CIFAR-10, CIFAR-100, and F-MNIST to train and evaluate the CNNGen archi-
tectures. We report the mean average error (MAE) and Kendall’s τ coefficient
in Table 1 for each predictor, as well as the standard deviation. Neural is our
baseline, Img is the predictor using information in the PNG image file, Py_code
uses information from the Python source code, and DT is the decision tree pre-
dictor using only 4 features. The Py_code predictor performs better than the
others, showing lower MAE and higher Kendall’s τ coefficient. Interestingly, the
Img performs comparably to our baseline (i.e., Neural).

Regarding the prediction of carbon emissions, using carbon emission data
from CodeCarbon, we train our predictors on 80% of 1,300 CNNGen architec-
tures and evaluate their prediction ability on the remaining architectures. Again,
Table 2 reports the average and standard deviation over all the execution of the
MAE and Kendall’s tau coefficient for the different predictors. Note that, this
time, since previous work did not report carbon emissions, we do not have any
baseline. Our results show that the decision tree predictor outperforms others,
exhibiting lower MAE and higher Kendall’s tau coefficient across all datasets.
Mann-Whitney tests confirm significant differences in prediction distributions,

176

ESANN 2024 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 9-11 October 2024, i6doc.com publ., ISBN 978-2-87587-090-2.
Available from http://www.i6doc.com/en/.

CIFAR-10 CIFAR-100 F-MNIST

Kτ
Neural 1.0e−1 ± 3.1e−2 1.3e−1 ± 2.2e−2 7.8e−2 ± 2.8e−2

Img 6.7e−2 ± 2.1e−2 4.7e−2 ± 2.8e−2 2.4e−2 ± 1.4e−2

Py_code 2.6e−1 ± 2.9e−2 3.4e−1 ± 4.4e−2 1.8e−1 ± 3.7e−2

DT 1.8e−1 ± 1.1e−1 1.5e−1 ± 4.2e−2 1.0e−2 ± 7.6e−2

MAE
Neural 1.4e−1 ± 1.5e−2 8.9e−2 ± 8.9e−3 1.6e−1 ± 1.9e−2

Img 1.1e−1 ± 6.9e−3 8.2e−2 ± 2.6e−3 1.0e−1 ± 1.1e−2

Py_code 1.0e−1 ± 9.5e−3 6.8e−2 ± 3.0e−3 1.1e−1 ± 1.2e−2

DT 1.0e−1 ± 7.3e−3 7.6e−2 ± 2.0e−3 1.0e−1 ± 3.8e−3

Table 1: Kendall τ and MAE for performance prediction

especially when comparing the decision tree predictor to others, with reported
p-values of 1.8e−46. These findings suggest the potential of our predictors, par-
ticularly the decision tree predictor that considers only a few features, as proxies
for carbon emissions prediction.

CIFAR-10 CIFAR-100 F-MNIST

Kτ
Img 4.2e−1 ± 3.6e−1 4.7e−1 ± 3.2e−1 6.0e−1 ± 1.8e−2

Py_code 3.9e−2 ± 9.1e−2 1.2e−1 ± 1.6e−1 6.1e−2 ± 1.8e−1

DT 7.9e−1 ± 2.1e−2 7.7e−1 ± 7.6e−3 8.3e−1 ± 1.3e−2

MAE
Img 1.0e−3 ± 4.6e−4 1.0e−3 ± 2.5e−4 1.2e−3 ± 2.1e−4

Py_code 1.5e−2 ± 7.5e−3 1.5e−2 ± 6.7e−3 2.0e−2 ± 8.1e−3

DT 3.3e−4 ± 3.7e−5 4.0e−4 ± 4.5e−5 4.4e−4 ± 2.6e−5

Table 2: Kendall τ and MAE for energy prediction

5 Conclusion

In this paper, we introduce CNNGen, a context-free grammar-based architecture
generator designed to tackle the challenges of generating diverse Convolutional
Neural Network (CNN) architectures for image classification tasks within Neural
Architecture Search (NAS). While previous approaches focused on performance,
such as accuracy or latency, CNNGen also monitors environmental impacts such
as energy consumption of these models, paving the way for greener NAS meth-
ods. CNNGen is easily extendable and reusable. We put effort into offering

6Results of statistical tests are available on the companion repository.

177

ESANN 2024 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 9-11 October 2024, i6doc.com publ., ISBN 978-2-87587-090-2.
Available from http://www.i6doc.com/en/.

exhaustive data with our generated CNN architectures (grammar phrase, PNG
image, Python code, and measures). Along with CNNGen and its 1, 300 archi-
tectures, we propose 3 different performance predictors. While our code-based
predictor is appropriate for performance prediction, a simple Decision Tree pre-
dictor using 4 features can handle energy consumption with a high accuracy. In
the future, we would like to use our predictors in the context of NAS methods.

6 Acknowledgement

We would like to thank Valentin Delchevalerie for his help proofreading this
paper. This work was supported by Service Public de Wallonie Recherche under
grant no 2010235 – ARIAC by DIGITALWALLONIA4.AI. Gilles Perrouin is an
FNRS Research Associate.

References
[1] Haifeng Jin, Qingquan Song, and Xia Hu. Auto-keras: An efficient neural architecture

search system. In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 1946–1956. ACM, 2019.

[2] Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real, Kevin Murphy, and Frank
Hutter. NAS-bench-101: Towards reproducible neural architecture search. In Kamalika
Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International Con-
ference on Machine Learning, volume 97 of Proceedings of Machine Learning Research,
pages 7105–7114, Long Beach, California, USA, 09–15 Jun 2019. PMLR.

[3] Lorenzo Bettini. Implementing Domain Specific Languages with Xtext and Xtend - Second
Edition. Packt Publishing, 2nd edition, 2016.

[4] Xiangning Xie, Xiaotian Song, Zeqiong Lv, Gary G. Yen, Weiping Ding, and Yanan Sun.
Efficient evaluation methods for neural architecture search: A survey, 2023.

[5] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A
survey. The Journal of Machine Learning Research, 20(1):1997–2017, 2019.

[6] Yiyang Zhao, Linnan Wang, Yuandong Tian, Rodrigo Fonseca, and Tian Guo. Few-
shot neural architecture search. In Proceedings of the 38th International Conference
on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pages
12707–12718. PMLR, 18–24 Jul 2021.

[7] Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay Vasudevan, and Quoc Le.
Understanding and simplifying one-shot architecture search. In Jennifer Dy and Andreas
Krause, editors, Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pages 550–559. PMLR, 10–15
Jul 2018.

[8] Mohamed S. Abdelfattah, Abhinav Mehrotra, Łukasz Dudziak, and Nicholas D. Lane.
Zero-Cost Proxies for Lightweight NAS. In International Conference on Learning Repre-
sentations (ICLR), 2021.

[9] Ming Lin, Pichao Wang, Zhenhong Sun, Hesen Chen, Xiuyu Sun, Qi Qian, Hao Li, and
Rong Jin. Zen-nas: A zero-shot nas for high-performance deep image recognition. In 2021
IEEE/CVF International Conference on Computer Vision, ICCV 2021, 2021.

[10] Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy consid-
erations for deep learning in NLP. In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages 3645–3650, Florence, Italy, July 2019.
Association for Computational Linguistics.

[11] Wei Wen, Hanxiao Liu, Hai Li, Yiran Chen, Gabriel Bender, and Pieter-Jan Kindermans.
Neural predictor for neural architecture search. CoRR, abs/1912.00848, 2019.

178

ESANN 2024 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 9-11 October 2024, i6doc.com publ., ISBN 978-2-87587-090-2.
Available from http://www.i6doc.com/en/.

	PapersAndBack
	AllPapers
	Wednesday
	ES2024-77-3

