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Abstract. Feature selection is one of the most relevant preprocessing and
analysis techniques in machine learning, allowing for increases in model
performance and knowledge discovery. In online setups, both can be af-
fected by concept drift, i.e., changes of the underlying distribution. Re-
cently, an adaption of classical feature relevance approaches to drift detec-
tion was introduced. While the method increases detection performance
significantly, there is only little discussion on the explanatory aspects. In
this work, we focus on understanding the structure of the ongoing drift by
transferring the concept of strongly and weakly relevant features to it. We
empirically evaluate our methodology using graphical models.

1 Introduction

Feature selection and feature relevance analysis [1, 2, 3] are relevant techniques
for model and data analysis in machine learning and data science. Machine as-
sistance in and automation of data analysis is particularly relevant when facing
time-critical tasks that involve potentially high dimensional data [4, 5, 6, 7].
An important instantiation of this setup is the monitoring of technical systems
where human operators have to analyze and understand the changes in the un-
derlying system to initiate appropriate action to keep the system functioning.
This is particularly relevant when the underlying system is part of critical infras-
tructure [7]. A promising way to address this problem is to consider it through
the lens of concept drift [8, 9, 10, 4, 11], i.e., a change of the underlying data
generating process. Here, a core task is drift detection [10] which is closely re-
lated to analyzing and understanding the drift [4]. First works on applying ideas
from feature selection to improve the performance of drift detectors indicate a
close relation to classical feature selection [12]. However, those lack the explana-
tory aspect that is of high relevance for monitoring tasks [4, 11]. In particular,
an in-depth analysis of the structural properties of drifting features, similar to
weakly and strongly relevant features that are linked to graphical models [1] and
computational causality [13], is still outstanding.

In this work, we study the fine structure properties of drifting features as
introduced in [12]. We extend and deepen the understanding of drifting features
to further categorize them into drift-inducing features that cause the drift and
faithfully drifting features that follow along. This allows us to derive important
information on the underlying structure of the drift by contrasting the time
(in-)dependent functional sub-structures.

This paper is organized as follows: In the first part (Section 2), providing
an overview of the related works, we recall the definition of concept drift and
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feature relevance. We then extend the ideas that led to the notion of drifting
features to enhance the understanding of the effect of drift by analyzing the flow
of drift-related information through involved features. This leads to efficient
discovery algorithms (Section 3). Finally, we empirically evaluate the resulting
algorithm on several datasets based on Bayes networks (Section 4).

2 Problem Setup and Related Work

In this section, we will briefly recall the main definitions of concept drift, drift
intensity, and feature relevance including a short overview of the related work.

In the following, we will consider a dataspace X composed of multiple features
f ∈ F, i.e., X =

∏
f∈F Xf for an index set F. We assume that each Xf is

standard Borel, e.g., Xf = Rd. For a datapoint X ∈ X we denote the feature
f ∈ F by Xf and for a subset F ⊆ F we write XF = (Xf )f∈F .

To model concept drift we consider a family of probability measures Dt on X
indexed over a time-domain T , in place of a time-invariant data distribution D as
considered in classical machine learning. Concept drift takes place if Dt ̸= Ds for
some s, t ∈ T [9] which can be rephrased to a statistical dependence of random
variables X and T representing a data and observation time [10].

To analyze the feature-wise effect of drift, [12] suggested to consider the
statistic of an idealized drift detector dubbed (Kullback-Leibler) drift intensity
IDt . A feature f is drifting if it can increase this quantity, i.e., IDt(F ) < IDt(F ∪
{f}) for some F ⊆ F. It was shown that IDt

is equivalent to the mutual
information of time and the selected features IDt(F ) = I(T ;XF ) [12, Theorem 1].

Similarly, in feature selection, a feature Xf is relevant to a target Y if it
increases the mutual information, i.e., I(Y ;XF ) < I(Y ;XF , Xf ), or more com-
monly if Y ̸⊥⊥ Xf | XF [1]. This is then split into strong relevance when we may
choose F = F \ {f} and weak relevance when a feature is strongly relevant only
for a subset of features. Otherwise, the feature is irrelevant.

In [12] the similarity of drifting and relevant features was used to derive an
efficient algorithmic solution to find all drifting features. In the following, we
will study the interaction of drifting features. As it will turn out, this essentially
relates to the notion of weakly and strongly relevant features.

3 Fine Structure of Drifting Features

The notion of drifting features describes which features are affected by the drift.
Here, we aim for a more elaborated description by introducing the sub-categories
of drift-inducing – those that introduce the drift into the system – and faithfully
drifting features – those that follow along with the drift. The differentiation is
derived from the following idea: Assume that a set of features XF are drifting
and that another feature Xf can be computed from those, i.e., Xf = h(XF , ε)
with independent noise ε. Then it is very likely that Xf too is drifting but
not because it is affected by the drift itself but rather because the relation to
XF is not affected by the drift. Using causality terminology [13] one may say
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Preprocessing
(X, (exp(2πiTk))dk=−d)

Train Model
X 7→ (exp(2πiTk))dk=−d
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Fig. 1: Drifting Feature Analysis Algorithm.

that drift-inducing features cause the drift while faithfully drifting features are
drifting as an effect, yet, a full causal analysis is beyond the scope of this paper.

To phrase this idea in terms of mutual information we start with the ob-
servation that a set N ⊆ F contains non-drifting features only if and only if
IDt(J) = IDt(J ∪ N) for all sets J ⊆ F. We generalize this idea to obtain the
notion of faithfully drifting features:

Definition 1. A set of features F ⊆ F is faithfully drifting given I ⊆ F, denoted

I
⊥⊥T−→ F , iff adding F cannot make the drift more prominent, i.e., IDt

(J) =
IDt(J ∪ F ) for all I ⊆ J ⊆ F. A set I ⊆ F is drift-inducing iff the remaining

features are faithfully drifting given I, i.e., I
⊥⊥T−→ F \ I. A drift-inducing set of

features is minimal drift-inducing iff it is minimal wrt. set inclusion.

Faithfully drifting and drift-inducing sets have reasonable properties includ-
ing transitivity and the desired functional property:

Lemma 1. Let F, Fi, I, Ii ⊆ F and ε ⊥⊥ X,T . It holds (i) transitivity: if

F1
⊥⊥T−→ F2 and F2

⊥⊥T−→ F3 then F1
⊥⊥T−→ F3 (ii) union stability: if Ii

⊥⊥T−→ Fi then⋃
i Ii

⊥⊥T−→
⋃

i Fi (iii) functionality: it exists a map h such that XF = h(XI , ε) if

and only if I
⊥⊥T−→ F .

Proof. For (i) and (ii) follow directly from [12, Theorem 1]. For (iii) apply
Kuratowski’s theorem and then use inverse transform sampling.

Notice that this implies that there are no synergy effects in faithful drift,

i.e., I
⊥⊥T−→ F if and only if I

⊥⊥T−→ f∀f ∈ F . Furthermore, this motivates the
notion of minimal drift-inducing sets: functionality for projections together with
transitivity implies that supersets of drift-inducing sets are drift-inducing and
subsets of faithfully drifting sets are faithfully drifting, i.e., if I2 ⊆ I1, F1 ⊆ F2,

I2
⊥⊥T−→ F2 then I1

⊥⊥T−→ F1. In other words, minimal drift-inducing sets can be
seen as minimal explanations of the drift. Notice that every drift-inducing set
contains a minimal drift-inducing set and that a minimal drift-inducing set does
not contain a non-drifting feature.

To determine the minimal drift-inducing sets we can make use of the same
algorithmic scheme used in [12] which is shown in Fig. 1, i.e., we can address
finding minimal drift-inducing sets using feature relevance for the learning task
X 7→ T . The difference is that we also take the distinction between weakly and
strongly relevant features into account with strongly relevant features relating to
drift-inducing features. This is justified by the fact that if the global time-mean
DT is strictly positive, then the intersection of two drift-inducing sets is again
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drift-inducing and in this case, there is exactly one minimal drift-inducing set
which is exactly the set of all strongly relevant features. More formally:

Theorem 1. Let I0 be a minimal drift-inducing set and S the set of all strong
relevant features for X 7→ T . Then it holds:

S =
⋂
I⊆F

drift-inducing

I ⊆ I0. (1)

Furthermore, if DT has a strictly positive density then equality holds in Eq. (1).
In particular, in this case, S = I0 is the unique minimal drift-inducing set.

Proof. Use [12, Theorem 1] then the statement follows by weak union and in-
tersection if positive definite (notice that DT > 0 suffices).

However, as already pointed out by [12] one has to be careful as most meth-
ods for feature selection are not directly applicable. Yet, as discussed in [2] this
problem can be solved by using a suitable preprocessing. In this work, we make
use of Fourier preprocessing. Thus, using Theorem 1 and [2, Theorem 2] discov-
ering minimal drift-inducing sets boils down to applying standard MSE-based
feature selection to the multi-output regression problem X 7→ (exp(2πiTk))dk=−d

assuming T ∈ [0, 1].

4 Experiments

To evaluate our methodology, we conduct a discovery experiment on data drawn
from randomly generated linear Bayesian networks with one sudden drift event
induced by adding an offset.1 Notice that standard benchmark drift datasets
cannot be used due to the lack of ground truth.

Data generating networks The distribution is given as

Xi =
∑
j<i

aijXj + bjsign(T ) + εi

where T ∼ U([−1, 1]), εi ∼ N (0, 1) and T, ε1, . . . , εn are independent. The
weights aij are sparsely sampled from a normal distribution with link probability
p, i.e., of j < i we have P[aij ̸= 0] = p, for bi a predetermined number M of
non-zero elements is selected.

As pointed out by [1, 14] the drift-inducing features are given by thoseXi that
are either directly impacted by T , i.e., bi ̸= 0, and their parents, i.e., ∃k : aik ̸=
0 ∧ bk ̸= 0. The set of all drifting features are given as those that are connected
to T by a path, i.e., ∃k1, . . . , kl = i : (akjkj+1 ̸= 0 ∨ akj+1kj ̸= 0) ∧ bk1 ̸= 0. All
other features are non-drifting.

Data and used Methods The networks we consider consist of three discon-
nected blocks, one with 25, and two with 5 nodes each. Drift is only induced
in the first block, the link probability p is the same for all blocks. Note that

1Code at https://github.com/FabianHinder/Analyses-of-Drifting-Features
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Table 1: Results of experiments. ROC-AUC of feature identification task over
100× 5 runs (median: m, mean: µ, standard deviation: σ).

I C D
m µ±σ m µ±σ m µ±σ

M
:
1

p
:
0 .
05

B 0.99 0.92±0.13 0.99 0.98±0.05 0.73 0.78±0.19
FI 0.59 0.58±0.31 0.62 0.60±0.34 0.53 0.55±0.24
MI 0.53 0.55±0.27 0.59 0.58±0.32 0.51 0.53±0.21
PFI 0.81 0.74±0.26 0.93 0.79±0.28 0.68 0.68±0.22

M
:
1

p
:
0 .
10

B 0.97 0.90±0.12 0.97 0.97±0.05 0.60 0.66±0.17
FI 0.53 0.55±0.30 0.59 0.57±0.34 0.46 0.49±0.18
MI 0.52 0.55±0.26 0.59 0.58±0.32 0.50 0.52±0.17
PFI 0.73 0.70±0.25 0.88 0.76±0.27 0.67 0.67±0.16

M
:
1

p
:
0 .
20

B 0.80 0.78±0.16 0.96 0.92±0.11 0.63 0.62±0.08
FI 0.55 0.56±0.24 0.62 0.58±0.34 0.42 0.44±0.16
MI 0.53 0.54±0.21 0.59 0.57±0.30 0.53 0.52±0.12
PFI 0.65 0.64±0.22 0.82 0.73±0.29 0.74 0.73±0.13

M
:
2

p
:
0.
05

B 0.85 0.86±0.12 0.98 0.95±0.09 0.70 0.73±0.15
FI 0.56 0.57±0.24 0.58 0.59±0.27 0.50 0.52±0.18
MI 0.55 0.57±0.21 0.56 0.59±0.26 0.53 0.54±0.16
PFI 0.74 0.74±0.20 0.85 0.79±0.21 0.67 0.68±0.16

M
:
2

p
:
0 .
10

B 0.76 0.77±0.13 0.97 0.93±0.09 0.60 0.61±0.07
FI 0.52 0.53±0.21 0.53 0.56±0.27 0.47 0.47±0.13
MI 0.53 0.54±0.17 0.55 0.58±0.26 0.52 0.52±0.10
PFI 0.67 0.66±0.18 0.82 0.75±0.22 0.68 0.67±0.11

M
:
2

p
:
0 .
20

B 0.66 0.67±0.13 0.91 0.86±0.13 0.66 0.66±0.08
FI 0.50 0.51±0.18 0.53 0.55±0.26 0.41 0.43±0.16
MI 0.52 0.52±0.14 0.56 0.58±0.24 0.53 0.54±0.12
PFI 0.62 0.62±0.14 0.74 0.72±0.21 0.76 0.74±0.12

I C D
m µ±σ m µ±σ m µ±σ

M
:
3

p
:
0 .
05

B 0.83 0.84±0.11 0.98 0.96±0.06 0.69 0.72±0.12
FI 0.54 0.56±0.21 0.57 0.59±0.24 0.51 0.52±0.16
MI 0.55 0.57±0.19 0.56 0.60±0.24 0.54 0.55±0.14
PFI 0.74 0.73±0.16 0.83 0.81±0.17 0.70 0.70±0.13

M
:
3

p
:
0 .
10

B 0.70 0.72±0.11 0.94 0.90±0.10 0.62 0.62±0.07
FI 0.52 0.54±0.17 0.55 0.58±0.24 0.47 0.48±0.13
MI 0.53 0.54±0.16 0.54 0.59±0.23 0.53 0.53±0.11
PFI 0.67 0.67±0.14 0.81 0.78±0.18 0.70 0.69±0.11

M
:
3

p
:
0 .
20

B 0.64 0.65±0.08 0.91 0.86±0.11 0.66 0.66±0.06
FI 0.49 0.50±0.15 0.52 0.55±0.23 0.43 0.45±0.15
MI 0.52 0.52±0.13 0.54 0.58±0.23 0.52 0.54±0.14
PFI 0.63 0.63±0.12 0.78 0.75±0.18 0.77 0.75±0.11

M
:
5

p
:
0.
05

B 0.79 0.79±0.10 0.89 0.90±0.08 0.68 0.69±0.07
FI 0.51 0.54±0.17 0.51 0.56±0.21 0.49 0.51±0.14
MI 0.53 0.56±0.17 0.53 0.59±0.22 0.54 0.55±0.14
PFI 0.75 0.74±0.13 0.83 0.82±0.14 0.72 0.71±0.11

M
:
5

p
:
0 .
10

B 0.69 0.70±0.09 0.86 0.85±0.10 0.65 0.65±0.05
FI 0.50 0.52±0.15 0.52 0.55±0.20 0.47 0.48±0.13
MI 0.54 0.56±0.14 0.55 0.59±0.21 0.53 0.54±0.12
PFI 0.69 0.69±0.12 0.79 0.79±0.13 0.73 0.72±0.11

M
:
5

p
:
0 .
20

B 0.60 0.61±0.08 0.80 0.79±0.10 0.70 0.69±0.06
FI 0.49 0.49±0.13 0.48 0.52±0.19 0.42 0.44±0.15
MI 0.52 0.52±0.12 0.55 0.57±0.19 0.53 0.55±0.15
PFI 0.62 0.61±0.11 0.73 0.72±0.15 0.79 0.78±0.10

a block can by chance consist of disconnected sub-networks. We consider the
link probabilities p = 0.05, 0.1, 0.2 and number of directly drift-affected features
M = 1, 2, 3, 5. For each combination of p and M we generate 100 example
networks. We take 5 independent samples per network, 500 data points each.

We apply the proposed feature selection algorithm based on extra trees [15]
which performed best in [12]. We consider the the native feature importance
(FI), permutation feature importance (PFI), Boruta [3] (B) – which builds on
FI but extends it by a normalization – and feature-wise mutual information [16]
(MI) – which is based on comparing distances of k-th neighbors.

Results We score the feature importances obtained by the different meth-
ods using the ROC-AUC as it has the advantage of not being affected by im-
balances and does not require defining a decision threshold. Besides the drift-
inducing (I) and drifting (D) features we also consider the capability to identify
the directly affected features (C; bi ̸= 0) which play an important role from a
causal perspective [13]. The overall results are presented in Table 1. As can
be seen, B performs quite well in the discovery of drift-inducing features, fol-
lowed by PFI. Interestingly, B performs even better if only the directly affected
features are considered. FI and MI perform rather poorly. For MI this can be
explained by the fact that the method works feature-wise. We observe that B
and FI are negatively affected by a larger number of directly affected features
(M) and links (p), for PFI and MI there is no obvious pattern. All methods
have problems distinguishing drifting and non-drifting features. This is in line
with the findings of [12]. Furthermore, the variance of different samples from
the same network is nearly as large as the overall variance.

We thus conclude that B offers a good choice for discovering drift-inducing
features. For discovering drifting features PFI seems to be the best option.
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5 Conclusion and Further Work

In this work, we analyzed the fine structure of drifting features relating it to
the notion of weakly and strongly relevant features. The introduced notions of
drift-inducing and faithfully drifting features allow for a better understanding
of the inner workings of the ongoing drift. We derived an efficient algorithm to
determine drift-inducing features by extending the ideas of [12, 4] in particular
answering this open question of [12] in the process. Our considerations revealed a
close connection between drifting features and functional graphical models which
play an important role in computational causality [13]. This might provide
insights into the causal structure of drift which is of high practical relevance.
Further considerations in this direction as well as performing comparable analysis
on real-world data seem to be interesting and relevant future work.
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