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Abstract. In order to solve non-linear problems, kernel-based classifiers
rely on implicit mappings to very high-dimensional spaces. These target
spaces, although mathematically robust, often lack the property of visual
interpretation, limiting the intuition of the problem at hand. In this work,
the notion of a similarity space is presented, to which one can map input
samples and visualize how they interact under a given kernel function. By
exploring statistics in such space, a class separability measure is derived,
which can be used to find optimal kernel parameters for binary classification.
Experiments using support vector machines were conducted, showing the
method’s effectiveness when compared to grid-search approaches.

1 Introduction

Implicit mapping enabled the formalization of kernel methods, particularly kernel-
based large margin classifiers, like SVMs [1]. Explicit mapping, however, may
provide an intuitive notion of the problem and uncover properties that are not
easily reachable through the implicit perspective. Similarities in relation to each
class, considering all samples in the learning set, can be calculated directly from
kernel matrices and represented as mappings into a similarity space. For binary
classification problems, visualization of such kernel representations, which are in
fact row or column summations of the kernel matrix, may add up intuition into
the learning problem.

In a previous work [2], properties of kernel affinity mappings were explored
in order to develop an approach for learning kernel parameters of SVMs. This
resulted in the description of a function between samples from opposite classes
whose maximum, obtained by tuning kernel parameters, results on models that
are good approximations of the generator functions. The fundamental principle
of this method is that it is based solely on the properties of the projections, does
not require validation sets and does not rely on extensive computational methods
to be accomplished.

Other functions that can be adopted as separability measures in the projected
kernel similarity space can also be found in the literature. An example is MMD [3,
4], which considers distances between functions directly in the reproducing kernel
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Hilbert space. In the present work, an extension of [2] is presented, with further
formalization by considering probability distributions in input space. Kernel
similarities between samples are considered in order to build representations in
a two-dimensional space, which embeds both global and local relations in very
high-dimensional kernel spaces. Mean statistics are adopted to set Gaussian and
Laplacian kernels prior to applying them in classification.

2 Kernel mapping into a similarity space

Kernels are essentially pairwise similarity measures that can be considered
to assess spatial relations of data and to infer density functions [5, 6]. By
combining pairwise kernel values, one can derive similarity measures between
sets and distributions. The kernel similarity ψk,θ(x, P ) of a sample x ∈ X to a
probability distribution P over X , given a kernel k parameterized by θ, is given
by:

ψk,θ(x, P ) = Ex′∼P [kθ(x,x
′)] . (1)

For a binary classification problem with classes C1 and C2, for example,
considering that P1 = P (x|C1) and P2 = P (x|C2), kernel similarities ψk,θ(x, P1)
and ψk,θ(x, P2) are measures of how x is likely to belong to C1 or C2. This is
basically the notion of likelihood, however, since there is no normalization for
unitary integration of densities in this case, in this paper it will be referred to
as a similarity measure between x and P . For a training set X = {x1, · · · ,xN}
sampled from P , kernel similarity can be empirically estimated as:

ψ̂k,θ(x,X) =

{
1

N−1

∑N
i=1
xi ̸=x

kθ(x,xi) if x ∈ X
1
N

∑N
i=1

kθ(x,xi) otherwise
(2)

The average of kernel values k(x,x′) between x and all samples x′ in a
training set X is, then, a measure of similarity between x and X. In binary
classification problems, kernel similarities are estimated for the two conditional
distributions P1 and P2 and can, therefore, be mapped into the two dimensional
space representing P1 × P2 by an operator Ψ as defined next:

{Ψk,θ : X → R2 | Ψk,θ(x) = [ψk,θ(x, P1), ψk,θ(x, P2)]
T
.} (3)

where Ψ is defined for a given kernel k with parameters θ.
As an illustrative example of such a two-dimensional mapping with a Gaussian

kernel kσ(x, x′) = exp− 1
2
||x−x′||2

σ2 with given width σ, consider Figure 1, where
class samples are presented in both input and similarity spaces. In this example,
the projection with kernel mapping was capable to linearize the problem, as
can be observed in the figure. Such an explicit representation of the mapped
samples provides intuition into the problem and paves the way to explore pattern
interactions in the similarities space.
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(a) Samples in a two-dimensional input
space

(b) Mapped samples in similarity space.
Each axis represents the similarity of
the point to each class.

Fig. 1: Example of similarity mapping using a Gaussian kernel.

3 Methodology

In kernel inductive learning, the data set is generally fixed and given in advance
so, in order to obtain the mapping, the type of kernel and its corresponding
parameters should be set. Since the type of kernel is also given and usually not
learned, similarity mapping relies solely on kernel parameters θ. As different
values of θ yield different mappings, this work aims at a function to assess the
effect of θ on pattern relations and on separability in the projected space.

Statistics of the projected data, e.g. mean and covariances, are capable to
express the response of the projections with relation to kernel parameters, so
here the average Ψk,θ(x) is considered to assess the central tendency of kernel
projections as θ changes, as represented in Equation 4.

Ψk,θ(XC) =
1

|XC |
∑
x∈XC

Ψk,θ(x) (4)

where XC is the set of all samples belonging to class C. Since the mean vector is
still in the same space, the notation Ψ is used to represent the similarity mapping
of both a point and a set.

Projections tend to perform a trajectory in the plane Ψ(x,X1)×Ψ(x,X2) as
a function of θ. Consider, for instance, the radius σ of an RBF kernel that is
increased gradually while the corresponding projections are observed. Very small
values of σ tend to map all samples close to the origin, since pairwise similarities
get closer to zero. In such a situation, projected data has very small variances and
little inter-class covariances due to the small receptive fields of kernel functions.
As σ increases, the projections move from the origin and describe a trajectory in
the space towards the point [1, 1]T to where all projections converge as σ → ∞.
Between the extreme points [0, 0]T and [1, 1]T , the two clouds of projected
points spread out, separate from each other and then get closer again as they
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approximate to [1, 1]T with the increase of σ. The Euclidean distance between
vectors Ψk,θ(XC1

) and Ψk,θ(XC2
) is then considered as a measure of separability

in similarity space, since it also quantifies proximity in relation to the linear
separator Ψ(x,X1) = Ψ(x,X2). Optimization of such a distance function is based
on the prior assumption that covariances gained at the maximum embody the
intricate pattern relations that will implicitly trade-off bias and variance of the
resulting model. It is important to notice that it does not require validation sets
and is not based on extensive search of parameters. The problem of optimizing
kernel parameters θ on a dataset X with classes C1 and C2 is formalized as in
Equation 5, as follows.

θ∗ = argmax
θ

||Ψk,θ(XC1)−Ψk,θ(XC2)||22 (5)
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Fig. 2: Similarity mapping along with the class vectors.

4 Experiments

4.1 Setting

The proposed method was tested using support vector classification. Three
different kernels were used, where their hyperparameters were chosen beforehand
using the proposed criterion. Posteriorly, SVMs were trained with the chosen
kernels, where only the flexible margin parameter C was tuned using grid-
search. Baseline SVMs were trained using each kernel with both C and kernel
hyperparameters being optimized jointly via grid-search.

Tests were conducted in 18 real-world datasets. The “Appendicitis" dataset
(appendicitis) was obtained from the KEEL datasets repository [7]; “Breast
Cancer Hess Probes" (breastHess) was obtained from [8]; and the dataset
“Gene expression dataset" (golub) was obtained from [9]. All of the others
come from the UCI Machine Learning Repository [10]. The dataset “Glass
Identification" (glass), which has seven distinct classes, was modified to become
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a binary classification problem. Class 7 is considered the positive class, while all
of the others are considered negatives.

4.2 Results

Accuracy values were measured for each dataset. Test metrics were obtained
using 10-fold validation, and the confidence intervals use a significance of 0.05.
Numerical results are on Table 1.

Table 1: Accuracy values on real-world datasets. Multiple kernel families were
optimizing using grid-search (GS) and the proposed method (SIM).

Basename Gaussian-GS Gaussian-SIM Laplacian-GS Laplacian-SIM
fertility 0.870 ± 0.035 0.880 ± 0.030 0.880 ± 0.030 0.880 ± 0.030
appendicitis 0.885 ± 0.077 0.876 ± 0.079 0.838 ± 0.065 0.876 ± 0.072
australian 0.867 ± 0.037 0.861 ± 0.033 0.854 ± 0.044 0.865 ± 0.044
german 0.762 ± 0.031 0.760 ± 0.0281 0.719 ± 0.011 0.768 ± 0.021
golub 0.821 ± 0.042 0.795 ± 0.062 0.654 ± 0.048 0.795 ± 0.062
banknote 1.000 ± 0.000 1.000 ± 0.000 0.999 ± 0.002 0.999 ± 0.002
glass 0.972 ± 0.017 0.963 ± 0.014 0.963 ± 0.014 0.967 ± 0.016
ILPD 0.701 ± 0.032 0.715 ± 0.006 0.712 ± 0.011 0.706 ± 0.022
haberman 0.729 ± 0.043 0.725 ± 0.048 0.719 ± 0.036 0.725 ± 0.031
sonar 0.855 ± 0.057 0.870 ± 0.044 0.620 ± 0.032 0.817 ± 0.072
breastHess 0.805 ± 0.063 0.827 ± 0.062 0.746 ± 0.048 0.812 ± 0.069
breastcancer 0.968 ± 0.014 0.962 ± 0.015 0.963 ± 0.016 0.963 ± 0.017
parkinsons 0.933 ± 0.054 0.902 ± 0.040 0.907 ± 0.039 0.943 ± 0.047
heart 0.826 ± 0.042 0.844 ± 0.035 0.837 ± 0.047 0.833 ± 0.034
climate 0.954 ± 0.013 0.950 ± 0.013 0.915 ± 0.007 0.944 ± 0.009
diabetes 0.769 ± 0.025 0.773 ± 0.020 0.751 ± 0.027 0.775 ± 0.022
ionosphere 0.934 ± 0.031 0.946 ± 0.020 0.929 ± 0.022 0.943 ± 0.019
bupa 0.715 ± 0.045 0.698 ± 0.047 0.675 ± 0.048 0.696 ± 0.035
average 0.854 ± 0.016 0.853 ± 0.015 0.816 ± 0.018 0.851 ± 0.016

5 Conclusions and discussions

Trading-off bias and variance of models [11] is a basic principle of inductive
machine learning. It is proved formally, so the designer will always need to
choose how to balance two or more objective functions. However, the search for
a global equilibrium point, without the need to select the importance of objective
functions, has always been an important topic of research. Automatic selection of
parameters that would allow the designer to fully rely on a prior decision strategy
is hard to achieve and has been mainly based on exhaustive computational search
in parameter’s space in recent years. The strategy introduced in this paper
presents a different perspective of the problem by focusing decision making on the
choice of objective function, as represented in Equation 5. The set of parameters
θ that maximize such a function are the ones selected to tune-up the model. The
selection is direct, since the function can be maximized, but it is based on a prior
understanding of the aimed properties of the projections in similarities space.
Visualization of explicit mapping allows for further explorations of new objective
functions that could express the aimed trade-off expressed by the projections.
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The method has proven to be competitive with grid-search, considered as a
baseline, in many datasets.
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