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Abstract.

Earth Observational (EO) datasets present challenges that differ from tra-
ditional Computer Vision benchmarks often examined by the AutoML
community. To assist EO researchers in leveraging AutoML techniques,
we offer a NAS benchmark with performance meta-data specifically for
an EO context. This dataset not only focuses on resource-efficient mod-
els crucial to EO but also includes hardware-based metrics. Moreover,
we investigate performance prediction to build a data-centric approach for
initializing multi-objective NAS search algorithms.

1 Introduction

Neural Architecture Search (NAS) encompasses a variety of methods designed to
automate the challenging process of creating neural network (NN) architectures
([1]). These methods aim to optimize NN architectures for decision-making
tasks using various strategies, including random search, bayesian optimization,
evolutionary algorithms, and reinforcement learning. ([2]). On the other hand,
Hardware-Aware NAS (HW-NAS) focuses on customizing models considering
hardware constraints, effectively balancing multiple objectives including fitness
as well as metrics of model efficiency such as the inference latency ([3]).

Recent AutoML research promotes the use of performance-based metadata
databases to manage the computational costs of NAS([4]). NASBenchmarks
offer evaluations of large NN search spaces for cost-free prototyping of search
methods. NASBench101 and NASBenchNLP([5]) contain tabular performance
data of numerous NN configurations. Recent benchmarks make use of surro-
gate models([6]), allowing for performance predictions across much larger search
spaces. While many benchmarks use of Computer Vision (CV) applications,
Earth Observational (EO) datasets, with their unique characteristics, require
more advanced approaches.

This study explores a dual approach to HW-NAS for EO data. It begins
with the creation of a specialized HW-NAS dataset within the NASBench101
search space, followed by a landscape analysis of this new benchmark. It then
examines the effectiveness of using compact surrogate models([1]), to determine
initial search points during HW-NAS initialization.
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Doctoral Fellowship.

209

ESANN 2024 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence and 
Machine Learning.  Bruges (Belgium) and online event, 9-11 October 2024, i6doc.com publ., ISBN 978-2-87587-090-2. 
Available from http://www.i6doc.com/en/.  



2 Earth Observation (EO) NAS Benchmark Dataset

EO datasets are essential to foster the development of AI methods for various
applications, including climate change monitoring, urban development analy-
sis, and disaster management. Local climate zones (LCZs) offer an objective
and culture-independent classification system that benefits the analysis of global
land-use. In this context, we use the ”So2Sat LCZ42” ([7]) dataset to evaluate
NN solutions of our database, considering a task of LCZ classification using
10-meter resolution Sentinel-2 imagery.

To select the referred networks, we propose the following sampling strategy:
Let us represent the search space defined on NASBench101 ([4]) as a grid, where
each square is a NN architecture. Then, N=30 random starting points (red color,
left figure) from the search space are sampled. Next, a neighbor (one hamming
distance) is randomly selected for each point (blue point on the figure in the
middle). The process is repeated for each next element (e.g., blue points lead to
orange ones), creating N random walks. Figure 1 visually describes the process.

Fig. 1: Deployment of a Random Walk-based sampling strategy over a grid-like
search space, for three steps.

With sampling 30 points initially and taking 14 random walk steps on them,
we gather 450 unique architectures in total((30) + (14 ∗ 30) = 450). The selec-
tion of 450 architectures was determined after considering the trade-off between
computational resources and the need for a representative sample.

Then, we proceed with evaluating the sample. We measure their training,
validation and test accuracies with the LCZ42 So2Sat dataset, as well as their
behavior using hardware dependent metrics. These include the average inference
time, the standard deviation of the inference time, the architecture size, the
number of parameters of the architecture and the MAC s ([8]). The fitness is
measured at regular intervals of every 2 epochs and until 108 epochs.

For the experiments, each model is trained using a single compute node
of the JUWELS Booster partition of the Jülich Supercomputing Centre at
Forschungszentrum Jülich. A node comprises four NVIDIA A100 GPUs with
40 GB of virtual memory, and two AMD EPYC Rome 7402 CPUs of 24 cores
(2.8 GHz) each. The training and evaluation of the models (train, test, valida-
tion) are done in a multi-GPU setting (4 GPUs, Distributed Data Parallel with
PyTorch), while the inference (time) is performed using a single GPU.
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3 Data-Centric Initialization of NAS

Initialization: We investigate the impact of a data-centric initialization on the
performances of a HW-NAS search strategy. Since it is a multi-objective opti-
mization problem, we create two surrogate models (XGboost): one for predicting
the performance (validation accuracy), another for a hardware related metric
(train time). Instead of measuring the real fitness of the encountered solutions,
we query their the larger tabular NASBench101 for the relevant performance
metadata. We train the surrogates using a very limited amount of data, specif-
ically about 0.5% of the entire search space, which equates to approximately
2,000 architectures.

The next step in the initialization procedure is to use the surrogates to esti-
mate the Pareto-front ([9]) generated using predicted performance of the entire
search space. Then, we randomly pick a N non-dominated solutions as starting
points for the target search algorithm. This work aims to observe the comput-
ing cost benefits of the initialization in terms of number of solution evaluations
needed by a MO HW-NAS strategy to find the best Pareto-front.

Baseline and Search Evaluation To evaluate the proposed initialization, we use
the baseline of Pareto Local Search(PLS) ([9]), with a initial population size
of N = 20 points. We compare the proposed method against a random ini-
tialization, using 30 different random seeds. During PLS, we prevent duplicate
architecture selection by comparing hashes with existing Pareto front solutions.
Besides, we compare the initialization baselines considering a budget of encoun-
tered solutions (evaluations) by the PLS algorithm. For PLS, the solution limit
during search depends on the initialization. With a random initialization, the
limit is the cumulative sum of training points for the surrogate model and the
search limit itself. In contrast, using surrogate initialization only considers the
search limit. (Example: 2,000 training points + 500 search limit = 2,500 limit
for random init., 500 limit for surrogate init.) All models for the data-centric
initialization experiments were trained using the NASLib library ([10]).

4 Results and Experiments

4.1 Landscape Analysis of EO HW-NAS

First, we compare the accuracy on both data sets. CIFAR-10 shows balanced
accuracy (similar macro/micro acc.), while So2Sat exhibits bias towards the
majority class (higher micro). This suggests a more challenging landscape for
So2Sat LCZ42. Further analysis reveals class imbalance across train/val/test
sets in So2Sat, contributing to the training-test gap. No model or data tuning
was performed to maintain a fair EO-NAS benchmark.

Macro accuracy is the average accuracy across all classes, treating each class
equally, while micro accuracy is the overall accuracy across all instances, giving
more weight to the majority class. A comparison of the average micro and macro
classification accuracy across the So2Sat LCZ42 and CIFAR-10 datasets shows
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that the So2Sat LCZ42 dataset has a macro accuracy of 41.13% and a micro
accuracy of 58.67%. In contrast, the CIFAR-10 dataset has both a macro and
micro accuracy of 89.62%.

Examining the relationship between the Micro accuracy and the Inference
Latency helps visualize the type of MO challenge to be tackled: an ideal baseline
retrieves a model (or set of) with as little latency as possible, while providing
with a high micro accuracy. This is observed in Figure 3.

Fig. 2: Ruggedness for Macro Acc. Fig. 3: Latency and MACs

Lastly, the ruggedness which is calculated via the autocorrelation, serves as
a significant metric in a landscape analysis, particularly in the context of NAS
[11]. Positive ruggedness values indicate less diversity in the search space, while
negative values suggest a more challenging and varied space. Understanding the
ruggedness aids in optimizing NAS processes. In the generated EO HW-NAS
dataset, there is a high density for ruggedness values between 0 and 5. Such
variations in the distribution suggest the presence of both homogeneous, as well
as challenging regions within the search space. This is observed in Figure 2.

4.2 Data Centric Initialization of HW-NAS

This study investigates a data-centric initialization for HW-NAS within the
NB101 search space. By optimizing cost-effective surrogate models, we construct
a performance-driven starting point for PLS exploration. We then evaluate the
effectiveness of this approach (Pareto Distance Average([12]), Best Accuracy,
etc.) by comparing it to a randomly initialized PLS with equivalent computa-
tional cost (measured by the number of trained models). This comparison allows
us to quantify the benefit of the proposed initialization strategy.

To assess the robustness of our findings, the experiment was repeated 30 times
with varying random seeds. We focused on comparing ”best training time”, ”best
validation accuracy” and ”average Pareto distance” across the Pareto fronts from
both data-centric and random initialization approaches. Randomly initialized
PLS achieves higher best validation accuracy (Fig. 5). The narrow metric range
(0.935-0.955) may also limit differentiation. Mann-Whitney U-test ([13]) reveals
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significant differences (p < 0.05) in all ”best validation accuracy” distributions.
A Surrogate initialization led to significantly higher and more sustained explo-
ration diversity based on average Pareto distance (Fig. 4). This suggests early
discovery of diverse solutions across the search space, unlike random initialization
which might converge prematurely. A Mann-Whitney U-test reveals significant
differences (p < 0.05) in all ”average Pareto distance” distributions.

There was no statistically significant difference observed between the best
training times of the compared methods, except for the comparison between
surrogate-initialized (500 evaluations) and randomly initialized (2000 evalua-
tions) distributions.

Fig. 4: ”Mean Pareto Distance” across
30 separate trials.

Fig. 5: ”Best Validation Accuracy”
across 30 separate trials.

5 Conclusion and Future Work

This work introduces an EO HW-NAS dataset within the NASBench101 search
space and analyzes data-centric initialization for HW-NAS.The EO HW-NAS
dataset empowers Earth Observation EO researchers to tailor neural network
(NN) designs for their specific data and hardware constraints. This is facilitated
by a comprehensive landscape analysis, which explores diverse metrics and yields
valuable insights into the EO benchmark dataset and its search space. Fur-
thermore, The dataset presents an opportunity for EO researchers to develop
surrogate models or refine NNs specifically tailored to their unique datasets and
hardware configurations.

An analysis of data-centric initialization in HW-NAS on NASBench101 re-
veals faster training for smaller solutions but marginally lower accuracy com-
pared to random initialization. Notably, this approach generates a more diverse
array of solutions. Such architectural diversity, coupled with comparable perfor-
mance metrics, enhances the robustness and versatility of the resulting models.
This diversity facilitates flexible deployment across various hardware platforms,
from resource-constrained devices to high-performance systems, thus broaden-
ing the applicability and efficacy of the models across diverse computational
environments[14].
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All code material for these works are publicly available:

• EO HW-NAS dataset ([15]).

• Data-Centric initialization of PLS ([16]).
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