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Abstract. This work presents a novel Spiking Neural Network train-
ing architecture based on a deepened Liquid State Machine integrating
Winner-Takes-All computation and Reward-Modulated Synaptic Plastic-
ity. The networks performance is evaluated on the Heidelberg Dataset for
spoken digit recognition. A two-layer liquid configuration improves clas-
sification accuracy by 5% over a single-layer baseline, while incorporating
feedback between liquid layers. This architecture demonstrates that deep
liquid models, combined with feedback and reward-driven learning, can
effectively capture complex spatio-temporal patterns, offering significant
advantages in terms of accuracy over traditional Liquid State Machines.

1 Introduction

Spiking Neural Networks (SNNs) have emerged as a promising alternative to
traditional deep learning architectures, motivated by their biological plausibil-
ity and energy-efficiency[1]. Unlike conventional Artificial Neural Networks,
which rely on continuous activation functions, SNNs operate using discrete,
time-dependent, spike-based communication, closely mimicking the way neu-
rons interact in the brain. This temporal coding of information allows SNNs to
process data like neurological networks, making them a compelling solution for
tasks requiring low latency and energy-efficient inference.

Despite the remarkable success of Deep Learning (DL), its reliance on large
amounts of labeled data results in huge computational expense, as numerous
floating-point operations are required during training and inference. In con-
trast, SNNs leverage sparse event-driven computation, where neurons only acti-
vate when a threshold is crossed. This dynamic nature allows to reduce energy
consumption, especially in combination with neuromorphic hardware[2].

However, one of the major challenges in adopting SNNs is their complex
training process. Traditional DL relies on gradient-based methods, such as
backpropagation, to optimize the model. These methods are not directly ap-
plicable to SNNs because the computation of gradients is difficult due to the
non-differentiable and discrete nature of spikes. As a result, several approaches
have been proposed, such as surrogate gradient methods[3], reformulation of
backpropagation through time[4] or biologically-inspired local learning rules[5].
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While these techniques have shown promise, training SNNs remains a non-trivial
task due to the intricacies of temporal dynamics, precise spike-timing, and the
need to balance accuracy with energy efficiency[6].

Our approach aims to bridge the gap between biologically plausible neural
models and the high-performance requirements of modern Machine Learning. It
builds upon the Deep Liquid State Machine|[7], a type of model that consists of
multiple liquid layers with intermediate unsupervised Winner-Takes-All (WTA)
layers. A liquid layer is a recurrent Spiking Neural Network that processes input
signals by transforming them into high-dimensional spike patterns, which can
be separated linearly[8]. Subsequent to each liquid layer, a WTA layer with
unsupervised learning is extracting spatio-temporal features that are passed to
the next liquid.

This paper introduces a new way to train architectures like the Deep Liquid
State Machine by utilizing the idea of predictive coding[9]. Predictive coding
suggests that the brain continuously generates predictions about sensory input
and minimizes the error between its predictions and actual sensory input. This
process happens hierarchically, with predictions sent downward through the sys-
tem, and prediction errors, or mismatches, propagated upward to refine future
predictions. Therefore, a new presented Reward-System plays a similar role in
reducing discrepancies between predictions and outcomes. When the network
makes an incorrect prediction, the reward signal informs the system that an er-
ror has occurred, just as a prediction error would indicate a mismatch between
the networks internal model and the actual data.

In a first step, the new architecture is explained, detailing its components
and mechanisms, focusing on the training method including Reward-Modulated
Spike-Time Dependent Plasticity (R-STDP)[10]. This sets the foundation for un-
derstanding how the model processes spatio-temporal data and adapts through
synaptic updates. Afterwards, the architecture is evaluated using the Spiking
Heidelberg Dataset (SHD)[11] for spoken word digits, allowing its performance
to be assessed in a real-world scenario involving biological plausible spike-based
input for multiple classes. This two-stage process demonstrates both the theoret-
ical underpinnings and practical effectiveness of the proposed Reinforced Liquid
State Machine.

2 Method

The architecture, depicted in Figure 1, features a deepened liquid structure,
where two interconnected liquid layers are dynamically modulated by an in-
termediate WTA layer, driven by a novel introduced Reward-System including
R-STDP synapses to optimize temporal pattern recognition.

2.1 Liquid Configuration

The Liquid in the following experiments consists of 135 spiking neurons with re-
current synaptic connections. The neurons are modeled as Leaky Integrate-and-
Fire (LIF) neurons, as in [8], ensuring a rich spatio-temporal response to input
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Fig. 1: The architecture of the Reinforced Liquid State Machine.

signals. The synapses in the liquid are represented by the modified stochastic
synapse model (MSSM)[12] to reflect the probabilistic nature of synaptic trans-
mission and plasticity. This probabilistic synaptic structure is allowing the liquid
to explore a wide range of states and maintain robust temporal dynamics[13].

2.2 Winner-Takes-All Configuration and Reward-Modulated STDP

The WTA layer in the architecture is composed of both excitatory and inhibitory
LIF neurons, structured to enforce competition among neurons and promote
sparse activity. The excitatory neurons in the WTA layer receive input from
the preceding liquid layer, selectively amplifying the most relevant signals. In
contrast, the lateral inhibitory neurons serve to suppress less active excitatory
neurons, ensuring that only a subset of the most active neurons wins and con-
tributes to downstream processing. The synaptic connections between the lig-
uid and the excitatory neurons of the WTA are governed by R-STDP synapses.
These synapses are the central components of the architecture that are subject
to training, highlighted in Figure 1 as Trainable Synapses. In this mechanism,
synaptic weights between the liquid and excitatory neurons in the WTA layer
are updated based on both the correlation between the spikes of pre- and post-
synaptic neurons and a reward signal that reflects the networks performance on
the task. In order to implement the local part of the learning rule in an online
way, each arrival of a presynaptic spike leaves a presynaptic trace x,,. described
by equation 1. Input spikes f are represented by the Dirac function §.
dzpre Tpre

T +zf:5(ttf). (1)

This trace reflects the activity of the presynaptic site of the synapse on a
timescale set by 7pr.. If the postsynaptic neuron is firing, the local weight is




updated by comparing x,,. to an activity target value xtq,, which determines
whether potentiation or depression occurs, as defined in (2). Furthermore, a soft
bound and a homeostatic rule like in [7] is added to the local learning rule to
keep the synaptic weights in a certain range with w,,., as the maximum weight,
1 as control on how much the update relies on the previous weight and 7 as the
learning rate.

Aw = N(ZTpre — Trar) (Wmaz * w)H. (2)

The eligibility trace e¢rqce serves as a mechanism that links the local synaptic
updates of equation 2 to the global delayed reward signals where Tyqce is de-
termining the time scale of the delay. This connection allows the influence of
a global reward to be distributed over time and across relevant local synapses,
ensuring more efficient salient activity selection in the WTA layer. It reads

degrace _ €trace + Aw. (3)
dt Ttrace

Finally, the weight update, including feedback, is performed after the entire
sample is processed. It is calculated as the product of the Reward-Signal r and
the eligibility trace for each synapse. The Reward-Signal is generated in the
Reward-System by comparing the prediction of the readout to the actual label.

Awfeeclback =T * €trace- (4)

These learning rules form the core of the algorithm, driving the underlying
process of adaptation and optimization.

2.3 Network Dynamics

The network dynamics involve a reciprocal interaction between the WTA layer,
the liquid layers, and the reward system, operating in a feed-forward and feed-
back loop to facilitate learning and adaptation. After processing the inputs from
the initial liquid layer, the WTA layer selects the most active neurons, represent-
ing the most salient features of the input spike pattern. These selected neurons
in the WTA layer then project their activity to the next liquid layer. The next
liquid layer, in turn, processes this input, transforming it through its recurrent
dynamics, thereby deepening the temporal representation. Once the second lig-
uid layer has processed the signal, a readout layer interprets the spiking activity
of both liquid layers. This readout layer produces the networks prediction or
decision, which could be a classification or a specific output value, depending
on the task. The reward system evaluates the output of the readout layer by
comparing it to the correct label or target. Based on this comparison, a reward
signal is generated, which is used to update the synapses in the WTA layer.
This process ensures that the WTA layer improves its selection of neurons over
time, optimizing the input representation fed into the next liquid layer for future
predictions.



3 Results

The experimental evaluation of the Reinforced Liquid State Machine is con-
ducted on the SHD for spoken digit recognition, comparing three different con-
figurations within each experiment: a standard single-layer liquid, a two-layer
liquid, and a two-layer liquid with reward modulation. The goal is to assess
how increasing depth and incorporating the novel feedback-system affected the
networks ability to capture temporal dynamics and improve classification ac-
curacy. A total of five experiments are carried out, each of them having a
different structure of connectivity in the liquids and also new initial weights.
The results in Figure 2 of the experiments demonstrate a clear improvement
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Fig. 2: Comparison of classification accuracy on the Heidelberg Dataset across
three different configurations: a single-layer liquid (baseline), a two-layer liquid
with unsupervised learning (No Feedback), and a two-layer liquid with the novel
introduced feedback learning architecture (Feedback).

in classification accuracy with the introduction of additional liquid layers and
feedback mechanisms. When a second liquid layer was added to the architec-
ture, the unsupervised learning showed an average accuracy improvement of 5%
compared to the standard single-layer configuration. This increase highlights
the benefit of deeper architectures in capturing more complex temporal depen-
dencies within the spiking patterns of the SHD. In addition, the introduction of
feedback from the second liquid layer back to the WTA layer further improved
network performance. This feedback mechanism enabled the network to refine
ongoing dynamics within the first liquid layer in real time and reinforcing rele-
vant spiking patterns. As a result, the new proposed architecture achieves the
highest accuracy across all tested setups, surpassing the two-layer configuration
without feedback. The incorporation of the new reward-modulated plasticity



enhances the models ability to generalize and adapt, leading to an additional
improvement in accuracy beyond the gains achieved with the second layer alone.

4 Discussion and Future Work

The results confirm that adding depth to Liquid State Machines enhances their
capacity to process complex spatio-temporal patterns. The introduction of a
second liquid layer yielded a 5% improvement in accuracy, underscoring the ad-
vantage of deeper architectures for capturing long-range dependencies. Further-
more, incorporating feedback between liquid layers in the proposed Reinforced
Liquid State Machine is leading to the highest overall performance, highlighting
the importance of feedback in refining neural representations in real time. These
findings suggest that deep liquid architectures with adaptive learning mecha-
nisms are effective for tasks requiring precise temporal recognition, offering a
robust alternative to traditional spiking network models. Future work should
explore the impact of adding additional liquid layers to deepen the architecture
further, compared to simply increasing the size of a single liquid layer.

References

[

Michael Pfeiffer and Thomas Pfeil. Deep learning with spiking neurons: Opportunities

and challenges. Frontiers in Neuroscience, 12, 2018.

[2] Aaron R. Young, Mark E. Dean, James S. Plank, and Garrett S. Rose. A review of spiking
neuromorphic hardware communication systems. IEEE Access, 7:135606-135620, 2019.

[3] Emre O. Neftci, Hesham Mostafa, and Friedemann Zenke. Surrogate gradient learning in

spiking neural networks. IEEFE Signal Processing Magazine, 2019.

4

Guillaume Bellec, Franz Scherr, Anand Subramoney, Elias Hajek, Darjan Salaj, Robert
Legenstein, and Wolfgang Maass. A solution to the learning dilemma for recurrent net-
works of spiking neurons. Nature Communications, 11, 12 2020.

5

Peter U. Diehl and Matthew Cook. Unsupervised learning of digit recognition using
spike-timing-dependent plasticity. Frontiers in Computational Neuroscience, 9, 8 2015.

6

Martin Bogdan. Learning algorithms for spiking neural networks: should one use learn-

ing algorithms from ANN/DL or neurological plausible learning? - A thought-provoking

impulse, pages 201-207. Servizo de Publicacions da UDC, 9 2022.

[7] Nicholas Soures and Dhireesha Kudithipudi. Deep liquid state machines with neural
plasticity for video activity recognition. Frontiers in Neuroscience, 13, 2019.

[8] Wolfgang Maass, Thomas Natschlaeger, and Henry Markram. Real-time computing with-

out stable states: A new framework for neural computation based on perturbations, 2002.

9

Rajesh Rao and Dana Ballard. Predictive coding in the visual cortex: a functional
interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 2:79—
87, 02 1999.
[10] Nicolas Fremaux and Wulfram Gerstner. Neuromodulated spike-timing-dependent plas-
ticity, and theory of three-factor learning rules. Frontiers in Neural Circuits, 9, 2015.
[11] Benjamin Cramer, Yannik Stradmann, Johannes Schemmel, and Friedemann Zenke. The
heidelberg spiking data sets for the systematic evaluation of spiking neural networks.
IEEE Transactions on Neural Networks and Learning Systems, 33:2744-2757, 7 2022.
[12] Karim Ellatihy and Martin Bogdan. Enhancements on the modified stochastic synaptic
model: The functional heterogeneity. I[CANN 2017, 10613 LNCS:389-396, 2017.

[13] Karim El-Laithy and Martin Bogdan. Temporal finite-state machines: A novel framework
for the general class of dynamic networks. ICONIP 2012.



