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Abstract. In recent years, Artificial Intelligence, particularly Machine
Learning (ML), has demonstrated remarkable success in addressing com-
plex problems. However, this progress has been accompanied by the emer-
gence of unexpected, poorly understood, and elusive phenomena that char-
acterize the behavior of machine intelligence and learning processes. Re-
searchers are often challenged to interpret these phenomena within the ex-
isting theoretical frameworks of ML, fostering a search for more complex or
technical explanations. One such phenomenon, known as “grokking”, oc-
curs when an ML model, after a long period of stagnant or even regressive
learning, suddenly exhibits rapid and substantial improvement. In this
paper, we argue that grokking can be explained with the theoretical foun-
dations of ML by leveraging Statistical Learning Theory, i.e., Algorithmic
Stability theory. We provide insights into how this theory can reconcile
grokking with established principles of learning and generalization.

1 Introduction

In recent years, Artificial Intelligence (AI), especially Machine Learning (ML),
has significantly transformed society, industry, and science. From mastering
games [1] to powering large language models [2] and solving complex problems
like protein folding [3], the capabilities of this new generation of intelligent ma-
chines appear boundless.

Despite significant advancements, we are increasingly encountering unex-
pected and poorly understood phenomena that complicate the behavior of ma-
chine intelligence and learning processes. Catastrophic forgetting [4], where
models lose previously acquired knowledge when learning new data, and bias
amplification [5], which reinforces historical societal biases inherent in the data,
are notable challenges. Other concerns include physical implausibility [6], lack
of explainability [5], and privacy violations [5]. Adversarial vulnerability [5] ex-
poses models to manipulation through subtle input alterations, while shortcut
learning [7] leads them to exploit superficial patterns rather than deeper insights.
Issues such as double descent [8], where performance temporarily dips before im-
proving, and benign overfitting [8], where models fit noise without compromising
generalization, challenge conventional wisdom. Over-parameterization [8] de-
fies expectations by enhancing performance despite excessive model complexity,
while grokking [9] refers to the delayed achievement of effective generalization.
These phenomena underscore the growing complexity and unpredictability of
ML, raising critical challenges for its reliable and responsible application.

In this work, we explore the phenomenon of “grokking”, where, following a
prolonged phase of stagnation or even regression, a model suddenly experiences
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a rapid and substantial improvement in task performance [9]. This abrupt shift
resembles the moment when a person achieves a breakthrough in understanding
after struggling with a concept. What makes grokking particularly fascinat-
ing is its divergence from the traditional expectations of statistical learning,
which generally follows a pattern of steady, incremental progress [10]. Instead,
grokking suggests a dynamic in which models may initially show little or no
improvement, or even a decline in performance, before unexpectedly surging in
capability. Originally observed in supervised ML on algorithmic datasets [9, 11],
this phenomenon has since been identified in real-world data [12–14] and other
learning contexts [15, 16]. This unpredictability has posed significant challenges
for researchers attempting to explain grokking within existing ML theoretical
frameworks, spurring the search for more sophisticated interpretations and ex-
planations [17–23].

In this paper, we argue that grokking can be understood through the lens of
ML’s theoretical foundations, specifically leveraging Statistical Learning Theory
(SLT), and more precisely, Algorithmic Stability theory. We offer insights into
how this framework reconciles grokking with established principles of learning
and generalization. To this end, we will conduct a theoretical analysis of the
phenomenon in Section 2. In Section 3, practical examples will be used to
illustrate and clarify the theoretical concepts. Finally, Section 4 will summarize
our findings and provide closing remarks.

2 Theoretical Analysis

Consider the supervised learning setting [10, 24]. Given a random observation
X ∈ X , the goal is to estimate the corresponding Y ∈ Y, sampled according
to an unknown distribution µ over Z = X × Y. This is achieved by selecting
an appropriate function f : X → Ŷ from a hypothesis set F . A learning al-

gorithm AH, characterized by hyperparameters H, outputs a function f̂ ∈ F
based on a labeled dataset of n samples, Dn = {(X1, Y1), . . . , (Xn, Yn)} =

{Z1, . . . , Zn}, where each Zi ∈ Z is sampled independently from µ. Thus, f̂

is defined as f̂ = AH(Dn). The generalization error of f̂ , representing its perfor-

mance in approximating P{Y |X}, is given by L(f̂) = EZ{ℓ(AH(Dn), Z)}, where
ℓ : F × Z → [0, 1] is a loss function that assesses the accuracy of the approx-

imation for each sample point. Since L(f̂) is unknown, we estimate it using
the empirical error, defined as Lemp(AH(Dn)) = 1/n

∑
Z∈Dn

ℓ(AH(Dn), Z). Ide-

ally, a learning algorithm would return an oracle function f∗ = argmin L(f),
minimizing the generalization error across all possible models. However, since

L(f) is unknown, we need to frame the problem as f̂ = argminf∈F Lemp(f).
This approach is known as Empirical Risk Minimization (ERM) [10, 24]. To
address the issue of ERM’s overfitting, hyperparameters H must be carefully
tuned, often by introducing regularization techniques, which can be either ex-
plicit or implicit[10, 24]. Explicit regularization typically involves constraints
on the parameter norms of f , such as an their p-norm. Implicit regulariza-
tion, on the other hand, can include modifying the functional form of f (e.g.,
selecting a linear model, kernel method, or neural network architecture with
specific layers or activations), altering the optimization algorithm (e.g., by ap-
plying early stopping or dropout), or even overparameterization. Moreover,



the model is usually expressed as f(X) = gω(Φθ(X)), where g : RD → Ŷ is
a task specific function, Φ : X → RD a representation function, and ω and
θ are the parameters of g and Φ respectively allowing to formulate ERM as

ω̂, θ̂ = argminω,θ∈F Lemp(ω, θ), where F becomes the, implicit or explicit ,
search space of the parameters [10, 24]. An alternative estimator to the empirical
error is the leave-one-out error, Lloo(AH(Dn)) = 1/n

∑
Z∈Dn

ℓ(AH(Dn \ Z), Z),
which calculates the average error on individual samples from Dn left out during
training.

In this context [8], it can be shown that P{L(AH(Dn)) ≤ L∗(AH(Dn)) +

M(AH)+∆(n, δ)} ≥ 1−δ, indicating that the generalization error of f̂ is bounded
by an empirical estimate, L∗ ∈ {Lemp, Lloo}, along with two additional terms.
The term M(AH) reflects the risk associated with the chosen algorithm and
its hyperparameters; this term increases when the algorithm prioritizes memo-
rization or overfitting rather than effective learning from the data. The second
term1, ∆(n, δ), represents a confidence measure related to the sample; this term
grows larger as the sample size decreases or as higher confidence is required.

An effective method to estimate M(AH) is based on Algorithmic Stability
(AS) [25–27]. AS has frequently provided valuable insights into generaliza-
tion [25, 26] and complex phenomena [8, 28]. The core idea of AS is intuitive:
the more consistently an algorithm performs when the training data are slightly
modified the more it generalizes. There are various types of AS [8, 25, 26], in-
cluding uniform stability, Hypothesis Stability (HS), cross-validation and leave-
one-out stability, error stability, and pointwise HS. Among these, HS has proven
particularly insightful for understanding complex behaviors. HS can be esti-
mated either practically or theoretically [8, 27] and is sensitive to the prop-
erties of the algorithm itself [8, 25–27]. HS can be defined as, for example,
βloo = EDn,Z′ |ℓ(AH(Dn), Z

′)− ℓ(AH(Dn \ Zi), Z
′)|, where Z ′ is a sample from

µ. Using Lloo as the empirical estimator, we find M(AH) ∝ βloo. Additionally, if

ℓ is Lipschitz continuous with respect to a distance d(·, ·) (where d : Ŷ ×Ŷ → R),
then βloo ∝ EDn,X′d(AH(Dn)(X

′),AH(Dn \ Zi)(X
′)). This HS formulation is

particularly useful because it can be fully estimated once models are trained,
allowing for stability analysis not only of the overall model but also of individ-

ual layers in deep architectures [8]. Specifically, after training f̂ = AH(Dn), one

can adjust the target Ŷ to any internal representation layer and, using a suit-
able distance d(·, ·), compute βloo for that layer. Furthermore, it can be shown
that βloo ∝ Cond(HH′), where H = [Φθ(X1), · · · ,Φθ(Xn)]

′, HH′ is the Gram
matrix, and Cond represents the condition number (i.e., the ratio between the
largest and smallest singular values).

In this work, we argue that HS, as seen in other instances [8], can offer insights
into the grokking phenomenon. When ERM is approached using gradient-based
methods [10, 24], results from Statistical Learning Theory (SLT) suggest that, as
a first approximation, M(AH) ∝ ι, where ι represents the number of gradient it-
erations [10, 24]. This implies that excessive iterations may harm generalization.
Interestingly, in certain situations, increasing ι might show minimal or no bene-
fit, or even a decrease, in generalization. However, after an extensive number of
iterations, a sudden improvement in capability, grokking, can occur [9, 11]. This
observation appears to challenge SLT principles, prompting researchers to seek
more nuanced explanations [17–23]. A refined interpretation of HS, as presented

1We will not delve into this term as it is independent of AH.



in [8], reveals that the approximation M(AH) ∝ ι in SLT, similar to SLT’s in-
terpretation of overparameterization, is overly simplistic. HS can provide more
immediate insights into grokking, as we explore in the next section. Specifically,
a high ι can lead to a lower βloo, which corresponds to improved generalization.

3 Empirical Evidences

In this section we will consider two examples: a toy2 example (TOY) and the
seminal example of [9] (MOD97).

Fig. 1: TOY Dataset.

The TOY dataset leverage the concept
of implicit biases as a possible explanation
for the phenomenon of grokking. Machine
learning algorithms are typically designed
to favor certain types of solutions, such as
simpler or easier ones. However, in some
datasets, this bias does not hold, and
memorization may be required to achieve
optimal performance. To illustrate this,
we consider a binary classification task on
a dataset of two-dimensional points. A
training set of linearly separable points is
constructed. A hard-margin Support Vec-
tor Machine is then applied to this data
to identify the maximum-margin solution,
which is subsequently used to generate a
test set consisting of points positioned close to the decision boundary. Next, cen-
tral points from the test set are removed, creating a scenario where test accuracy
will not improve unless the learned solution aligns closely with the maximum-
margin solution. This dataset is represented in Figure 1. For the TOY dataset,
we perform binary classification with Y ∈ {±1} on a dataset of 2-dimensional
points X ∈ R2. We learn a model f(X) = W ·X, where the weights W ∈ R2 are
optimized using ERM with gradient descent (learning rate = 0.02) and a loss
function ℓ(f, Z) = exp(−Y f(X)). In Figure 2, we report the training and test

2https://xanderdavies.com/writing/toy_grok/toy_grok.html

Fig. 2: Results for the TOY Dataset.

https://xanderdavies.com/writing/toy_grok/toy_grok.html


Fig. 3: Results for the MOD97 Dataset.

error percentages along with the HS, estimated on the data using the misclassifi-
cation loss and the training loss [8, 27] as ι varies. As illustrated in Figure 2 and
discussed in Section 2, the HS does not increase with ι. Instead, it decreases,
which indicates potential improvements in test error that are indeed observed.
Notably, even when the training curve appears to plateau, the HS significantly
decreases, suggesting enhanced generalization performance, which is reflected in
the test error reduction.

For the MOD97 dataset, we precisely replicate the experiment from [9] (specif-
ically, Figures 1 and 4) and present the results in Figure 3, with the addition of
HS. In this case, directly estimating HS was computationally infeasible; there-
fore, following the approach in [8], we approximate it using the condition number
computed on the representation vector (as described in Section 2), while varying
ι (keeping it consistent across both figures). Notably, the results in Figure 3
closely resemble those in [9]. Here, as well, HS serves as a robust indicator of
the learned model’s generalization ability. Even if the training curve suggests
convergence or a slowdown in learning, the HS provides insight into the likely
performance on the test set (assessed through the loss rather than the error, as
we are estimating the HS of the representation).

Both the TOY and MOD97 dataset results highlight the potential of HS for
understanding and predicting generalization behavior, thereby identifying early
signs of grokking.

4 Conclusions

This study demonstrates that the phenomenon of “grokking”, while initially
perplexing, can be understood within the established framework of Statistical
Learning Theory, particularly through the lens of Algorithmic Stability. By
applying these theoretical principles, we clarify how grokking aligns with the
core concepts of learning and generalization. Our findings suggest that rather
than requiring novel frameworks, existing theories are sufficient to explain this
abrupt transition in model performance. This reinforces the adaptability and
depth of current theories in addressing emerging, complex behaviors in artificial
intelligence.
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