
Continual Unlearning through Memory
Suppression

Alexander Krawczyk1 and Alexander Gepperth2

University of Applied Sciences Fulda - Applied Computer Science
Leipziger Str. 123 - Fulda - Germany

Abstract. This study uncovers surprisingly effective synergies between
the field of continual learning (CL) and machine unlearning (MUL). We
extend the common class-incremental setting from CL to incorporate sup-
pression requests in what we term class-incremental unlearning (CIUL).
We present a light-weight approach to CIUL using replay/rehearsal-based
CL approaches together with a selective replay strategy termed ”Replay-
To-Suppress” (RTS), where we actually make use of the catastrophic for-
getting effect to achieve unlearning. In particular, we adapt a CL strat-
egy termed adiabatic replay (AR) to achieve suppression at near-constant
time complexity. We demonstrate excellent overall performance for all CL
strategies extended by RTS on MNIST, F-MNIST and a latent encoded
version of the challenging CIFAR and SVHN benchmarks.

1 Introduction

Machine Unlearning (MUL) is concerned with solutions for selective data re-
moval from trained models. Nowadays, large-scale architectures can have up to
billions of trainable parameters, which drastically increases the cost of retrain-
ing. In addition, the original training data may become inaccessible at the time
of deletion requests [1]. This highlights the need for energy-efficient solutions to
remove certain data from trained ML models. In this work, we propose an active
forgetting mechanism termed Replay-To-Suppress (RTS) derived from conven-
tional replay-based continual learning (CL) methods. We furthermore propose
the scenario of class-incremental unlearning (CIUL), and adapt an approach
termed adiabatic replay [2] to work in this scenario at constant time complexity.
Our approach is based on 1) hippocampal-like replay of latent features from a
pre-trained feature encoder, 2) using selective replay strategies, and 3) perform-
ing local updates so that only a near-constant time complexity is reached for
model (re-)training.

2 Related Work

Exact unlearning is achievable by data sharding and the use of multiple tem-
porary networks [3] or naive retraining. The vast majority of MUL techniques
are only able to perform ”approximate unlearning” [4, 5], for example by stor-
ing additional meta-data, such as gradients or parameters for future deletion re-
quests. Weight scrubbing [6,7] adds noise tailored to the loss landscape using the
Fisher Information Matrix (FIM). SCRUB(-R) [8] is based on a teacher-student



framework where a frozen model trains a student model with an alternating loss
optimization similar to the min-max game of GANs. Continual Learning and
Private Unlearning (CLPU) [9] is a CL-compliant framework where tasks are
either marked as permanent, temporary or to be forgotten. Several sub-models
are combined with experience replay (ER) to achieve exact unlearning on de-
mand. The authors of [10] show an re-optimization-based approach to class-level
selective forgetting in a task-incremental CL setup. This approach uses a data
augmentation technique called ”mnemonic codes” (a synthetic image generated
once per class) embedded in each data sample combined with a special loss
function. Selective Amnesia [11] frames the problem of active forgetting from
the perspective of continual learning, combining conditional generative replay
(GR) [12] with EWC [13].

3 Class-Incremental Unlearning

In the supervised Class-Incremental Unlearning (CIUL) scenario, a model pa-
rameterized by θ needs to continually learn from a sequence of training datasets
D1, . . . ,Dk, Dk = (xi

k, y
i
k)

nk
i=1. For each task, we specify a datasetDs

k ⊂ Dk whose
classes should be suppressed (S), and a complementary dataset Dr

k = Dk \ Ds
k

whose classes should be learned (L). The classifier is expected to exhibit degraded
performance or complete forgetting over suppressed classes when evaluated on a
test set for Ds

k after the full training sequence.

4 Replay-To-Suppress

Replay of past data is a powerful paradigm to mitigate CF [14,15]. RTS can be
applied to virtually any replay-based technique by tweaking the replay mecha-
nism to exclude samples of to-be-suppressed classes. This way, we use CF to
remove unwanted information automatically, while at the same time protecting
to-be-retained knowledge. For every new task, the RTS strategy is as follows:

1. generate samples either based on the incoming batch or conditionally based
on classes ”to-be-retained”

2. remove the generated samples belonging to classes ”to-be-suppressed”,
with class identities being inferred by a forward pass of the model (this is
an optional step, in case we don’t use class-conditional sampling)

3. train the model on a batch composed of generated and incoming samples

5 Experiments

5.1 Implementation

All evaluated methods, except for AR, use the ANN structures given in Tab. 1.
Training and testing is performed with a mini-batch size of 128, and if not
stated otherwise, for 100 (MNIST/F-MNIST) and 200 (CIFAR/SVHN) epochs



respectively. The default optimizer is set to be ADAM with ϵ = 10−4, β1 =
.9, β2 = .999.

Model architecture Layer structure

DNN-1 (MNIST) D(400) × 3 → SM(10)
DNN-2 (CIFAR/SVHN) D(800) × 4 → SM(10)
CNN-1 (F-MNIST) C2D(32, 3 × 3, 2 × 2) → MP (2 × 2) →

C2D(64, 3 × 3, 2 × 2) → MP (2 × 2) →
D(512) → D(256) → SM(10)

ENC-1 (MNIST/F-MNIST) D(512) → D(256) → D(128) → D(2z)
ENC-2 (CIFAR/SVHN) D(1024) → D(512) → D(256) → D(2z)

Table 1: ANN structures used in the empirical study. D=Dense, C2D=2D
Convolution, MP=Max Pooling, SM=Softmax, RL=ReLU.

Baseline: An ANN jointly trained for 200 epochs on Dr =
⋃
k

Dr
k.

Sequential Finetuning (SFT): The model is incrementally trained on each
task tk from Seq. A/B Tab. 2, decreasing ϵ to 10−5 after t1. Additional dropout
with a rate of 0.3 is added to each dense layer.
Elastic Weight Consolidation (EWC) [13]: EWC is trained for 100 epochs
with λ = 100. All available samples from Dr

k are used for FIM calculation,
however, samples belonging to classes from Ds

k are excluded.
Experience Replay (ER) [14]: ER is trained via SGD with ϵ = 10−3 and uses
reservoir sampling for episodic memory population. We remove samples from
classes in Ds

k after each suppression task. A storage budget of 50 (MNIST/F-
MNIST) and 100 (latent) samples per class is allocated. Additionally, we apply
a sample-wise class-balanced loss weighting as proposed in [16].
Deep Generative Replay (DGR) [12]: DGR uses symmetric C-VAEs with
β = 1, a latent dimension of z = 25 (MNIST), z = 50 (F-MNIST), and z = 100
(latent) as the encoder/decoder networks, see ”ENC/DEC” from Tab. 1. The
loss function is sigmoid cross-entropy, and the latent prior p(z) follows a unit
Gaussian distribution. The VAE is class-conditioned on the label space p(y)
to control image generation. To ensure balance, samples from the prior are
generated in equal proportions, as demonstrated in [2, 16]. The DGR solver
(DNN-1´) is trained using SGD with ϵ = 10−3 for 100 epochs. The generator
is trained for 100 epochs on MNIST and F-MNIST, and 200 epochs on latent
data.
Selective Amnesia (SA) [11]: This method uses the same C-VAE architecture
as DGR but introduces a dedicated forgetting mechanism with a regularized loss
that combines the corrupted, contrastive, and EWC losses. After each task, a
frozen copy of the VAE θ̂tk generates samples for FIM calculation. Similar to

EWC, classes designated for suppression are excluded from generation by θ̂tk .

SA forgetting is performed for 104 steps using 5000 generated samples from θ̂tk .
The EWC regularization strength, λEWC , is set to 100, while γSA is kept at 1.0.
Adiabatic Replay (AR): AR is used with K = 100 (MNIST), and K = 256
(F-MNIST/latent). The annealing control parameter σtk(t = 0) is set to 0.5σ0



(MNIST/F-MNIST) or 0.25σ0 (latent) for each task tk, k > 1. Samples from
classes to be suppressed are excluded from the set of samples generated by AR’s
variant generation by performing an additional forward pass after sampling.

5.2 Evaluation protocol

Benchmark datasets are MNIST, FashionMNIST, SVHN and CIFAR-10. Fea-
ture encoding is applied to SVHN and CIFAR data as described in [16]. Two
CIUL sequences are constructed by splitting the dataset as shown in Tab. 2.
Each CIUL experiment is run 10 times using a random initialization.

Sequence t1 t2 t3 t4 t5 t6 t7 t8

CIUL-A L[0-5] S[0-2] L[6,7] S[3,4] L[8] S[5] L[9] /

CIUL-B L[0-3] L[4-6] S[4,5] L[7] S[6] L[8] S[7] L[9]

Table 2: CIUL sequences A and B. L stands for learn, S for suppress.

5.3 Measuring Continual Unlearning Performance

When denoting the test accuracy on task i < j after training on task j as αi,j ,
where i < j, suppression is defined as: fs = N−1

∑
i∈T s (αi,i − αT,i). Retention

αr is measured as the classification accuracy on the union of all retention sets:
αr = accuracy on

⋃N
i=1 Dri .

6 Results

BASE AR DGR ER SA EWC SFT
Metric → αr αr fs αr fs αr fs αr fs αr fs αr fs

C
IU

L
S
e
q
u
e
n
c
e

MNIST-A .98 .89 .88 .91 .91 .92 .85 .84 .92 .34 .17 .25 .99
MNIST-B .97 .72 .87 .87 .90 .92 .97 .64 .91 .35 .50 .14 .99

FMNIST-A .96 .79 .58 .92 .87 .93 .87 .89 .90 .60 .54 .24 .98
FMNIST-B .93 .71 .70 .85 .80 .91 .80 .72 .82 .24 .94 .15 .99

SVHN-A .96 .56 .43 .95 .94 .95 .94 .94 .94 .20 .93 .20 .98
SVHN-B .94 .62 .54 .91 .90 .94 .92 .87 .93 .08 .97 .08 .99

CIFAR-A .96 .67 .40 .76 .84 .94 .91 .74 .86 .24 .73 .24 .94
CIFAR-B .82 .40 .41 .79 .52 .82 .80 .81 .55 .15 .92 .15 .96

Table 3: Performance comparison across CIUL task sequences, averaged over
10 runs. Higher values indicate better performance for both retention αr

and suppression fs.

As can be seen from Tab. 3, all of the replay methods (ER, DGR, AR) en-
hanced by RTS (see Sec. 5.1) show strong performance overall. DGR has to use



an increasing number of generated samples for each task, which can be prob-
lematic (see [16]), something AR does not have to do, although its performance
is slightly inferior. ER is a very strong baseline for CL, but one might expect
that the limited replay budget will lead to problems for CIUL sequences with a
larger number of tasks. SA performs strong suppression, but lacks the ability to
retain knowledge. It also requires additional training time since forgetting does
not occur simultaneously with learning new data. EWC gives variable results:
sometimes it has problems with suppression and/or retention, this depends heav-
ily on the EWC balance parameter. SFT only adapts to the most recent task,
as expected, and fails completely at retention.

7 Discussion

Synergies between CL and MUL Most MUL methods are disconnected from
the field of CL. In general, they either require access to the complete forget set,
retain set or both, see e.g., [4, 6, 7, 17–20]. The few exceptions either use multi-
headed classifiers [10] or are incompatible with CL since the task sequence needs
to be known beforehand [9]. It is quite surprising that the RTS technique we
propose here, a straightforward modification to off-the-shelf CL approaches, can
achieve such high-quality results on simple and complex CIUL benchmarks, see
Tab. 3. Rather than trying to avoid it at all cost, we stress that RTS uses
catastrophic forgetting (CF) as a tool for enabling controlled suppression.

Suppression performance/efficiency in RTSWe speculate that suppression
is more effective for less recent classes, since they are more prone to suffer from
transient CF. Data complexity clearly influences suppression, since more complex
data should suffer from CF more strongly. However, RTS is remarkably efficient,
especially for inherently sample-efficient techniques like AR, enabling its use with
really large-scale models. In contrast, dedicated forgetting operations described
in MUL are often inefficient and increase storage and computational costs [11].

A note on methods relying on regularization It is common to apply a
penalty term to the loss like EWC and LwF in MUL [10, 11]. However, these
approaches require a-priori knowledge of the task (suppression) sequence be-
cause they contain parameters that can only be tuned ”in hindsight” by cross-
validation. Furthermore, the order of learning and suppression has to be known
beforehand to allow proper exclusion of classes from FIM calculation.

8 Conclusion and future work

CL methods may benefit from the inclusion of active forgetting techniques due
to capacity or memory constraints, as knowledge already acquired may become
outdated over time, requiring the removal of data that does not actively con-
tribute to solving the objective of the deployed model. In addition, consolidated
data may contain harmful information that needs to be removed to avoid mal-
functions. We have shown that RTS enables several CL techniques to be effective
in selectively unlearning information. A key point of future research should be



the scaling of CIUL to a very large number of tasks and samples, where a closer
study of constant-time replay approaches such as AR could be beneficial, as the
linear scaling of DGR and the unbounded growth of the required replay budget
for ER on a large number of tasks/classes limit their practical applicability.
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