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Abstract. Differential imaging is a technique to post-process images
captured by ground-based telescopes during an observation campaign, in
order to make exoplanets in a distant planetary system directly visible
and to remove the so-called quasi-static speckles that dramatically affect
detection capabilities. In order to introduce geometric diversity between
the exoplanets and the quasi-static speckles, the light is split into spectral
channels during the data acquisition process, producing a 4-D data cube
with images recorded at many wavelengths and at many times. In this
work, we propose to follow an inverse problem approach to model the as-
tronomical data as the contribution of a low-rank component containing
the background of quasi-static speckles and a sparse component contain-
ing the exoplanets. We then formulate the resulting model as a convex
non-smooth optimization model so that an accelerated proximal gradient
descent can be used to solve the detection problem.

1 Introduction

Direct imaging of exoplanets yields useful information to astronomers willing
to study their properties, such as orbital trajectories from which important
characteristics can be deduced (e.g., orbital period, mass). However, imaging
these exoplanets remains a challenging task; it requires both specific observation
strategies and dedicated post-processing techniques to detect the tiny amount
of starlight emitted by exoplanets. Since specific noises make it impossible to
detect exoplanets on a single image, astronomers have devised acquisition tech-
niques to observe a given exoplanet under various speckle alterations. This
principle supports angular differential imaging (ADI), spectral differential imag-
ing (SDI), or a combination of both (ASDI) [7]. For instance, ADI leverages the
Earth rotation during one observation campaign to detect a rotating exoplanet
(in the Earth coordinate frame) while the nature of the speckle (atmospheric or
instrumental) makes it fixed. In SDI, observation diversity is achieved through
wavelength variations: the spatial configuration of the exoplanets (before the
instrumental PSF) is constant while the speckles and the instrument PSF are
dilated by a wavelength-dependent factor. By exploiting this variety between
exoplanets and speckles, several advanced post-processing algorithms in ADI
have been proposed to unmix both components. Among them, a first family of
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methods models the background (capturing the speckle and the starlight resid-
ual) as a low-rank matrix, then subtracts the background from the images to
finally derotates and average the residual images to reveal the exoplanets. The
simplest method is the PCA subtraction technique (also called KLIP [13]) that
obtains the background by computing a trunctated SVD accross the time and the
spatial domain. Subsequently, [8, 12, 14] added to the low-rank model a sparse
component capturing the exoplanet signal to lower the self-subtraction effect of
the planetary signal induced by PCA. On the other hand, another background
model approach named PACO (for patch covariance) instead learns a statistical
model of the background from the data by looking at the local spatial covariance
between pixels in the images [6]. From the work of [3, 10] leveraging PCA and [6]
adopting PACO, it was shown that including SDI data into ADI allows to reach
a better contrast between an exoplanet and its host star on the post-processed
images. In this context, we propose to enhance the PCA algorithm applied to
ASDI data by introducing a sparse component modeling the exoplanets, and
hence extending the work of [14] to ASDI. Moreover, we compare the perfor-
mance of the new ASDI algorithm with the classical PCA algorithm by drawing
a modified version of the so-called Receiver Operating Characteristic curves.

2 Low-rank plus sparse model for ASDI data cubes

Preprocessing: Starting from an ASDI data cube Y ∈ RWT×N2

of N × N
images captured at W wavelengths λ1 < . . . < λW and T times, we would like
to reconstruct a map S ∈ RW×N2

containing the exoplanets, which have a flux
varying with the wavelength. Similarly to [3, 10], to freeze the speckle pattern
along the spectral dimension, which is the key ingredient for having a low-rank
quasi-static speckle background, we preprocess the data cube Y by scaling each
image, captured at a given wavelength λ ∈ {λℓ}Wℓ=1, with respect to the scale
factor λW /λ, yielding a data cube of n × n images, where n = N⌈λW

λ1
⌉ > N .1

Moreover, an annular mask of inner radius Rin and outer radius Rout is applied
on the scaled data cube using the mask operator PΩ : RWT×n2 7→ RWT×|Ω| that
only keeps the columns indexed by the annular mask Ω ⊆ {1, . . . , n2}. Scaling

and masking the data cube Y ∈ RWT×N2

provides the preprocessed ASDI data
cube Z ∈ RWT×|Ω|, which can be decomposed into three additive terms: the
speckle pattern (low-rank), the planetary signal (sparse) and the detector noise
(assumed to be Gaussian).
The sparse component: Since the number of exoplanets in the cube is finite
and much lower than N2, we expect that S ∈ RW×N2

, containing the exoplanets,
will be sparse according to the spatial dimension. Moreover, if an exoplanet lies
in the preprocessed data cube Z, then it will be a point source convolved with the
non-coronagraphic point spread function (PSF) of the telescope2 and that rotates
according to the parallactic angle due to the Earth’s rotation in ADI. Combining

1To be more precise, we first apply a zero-padding of 1
2
(n−N) at each border of the images

before scaling them. This prevents data from leaving the image during scaling.
2Assuming a sufficiently large angular separation of the exoplanets so that coronagraph

effects become negligible.



the rotation (involving an interpolation of the pixel grid) with the convolution
and applying the scaling and the mask operators coming from preprocessing
(see Figure 1), we obtain what we call the trajectorlet operator Ψ(·) (inspired
by [14]) modeling the behavior of the planetary component in the data cube:

Ψ : RW×N2 7→ RWT×|Ω| : S → Ψ(S) := PΩQDT (S).

(mask)

(rotation)

(scaling)(convolution)

Fig. 1: Illustration of the trajectorlet operator

The low-rank component: Thanks to the preprocessing step freezing the
background along the spectral axis, we can model it as a low-rank matrix
L = UrX

⊤, where Ur ∈ RWT×r contains the r first left singular vectors of
the preprocessed ASDI data cube Z, assuming that the low-rankness of speckles
is not impacted by faint exoplanets, while X ∈ R|Ω|×r is a matrix of parameters
that is to be optimized.
The inverse problem: Combining the previous considerations, this leads us
to the following convex non-smooth optimization problem:

min
X∈Rr×|Ω|,S∈RW×N2

1

2
∥Z − UrX

⊤ −Ψ(S)∥2F + α

N2∑
j=1

∥Sj∥2 α > 0, (1)

where UrX
⊤ models the background, Ψ(S) models the exoplanets and, Sj ∈ RW

are the columns of S. We solve (1) via an accelerated version of the proxi-
mal gradient descent, named FISTA [1], with the (columnwise) ℓ2,1 mixed-norm
proximity operator [2, 9] to manage the convex non-smooth regularization term.
Our implementation is fully compatible with PyTorch so that one can use au-
tomatic differentiation to obtain the gradient of the fidelity term (including the
interpolations used in Ψ) in the objective function.3

Initialization: To initialize FISTA, we set all the entries of S(0) to zero, while
X(0) is defined via the truncated SVD of Z, i.e., (X(0))⊤ := ΣrV

⊤
r such that

UrΣrV
⊤
r := SVDr(Z).

3 Performance assessment

Detection procedure: Considering a threshold τ > 0, any ASDI algorithm
provides a detection map M ∈ RN×N such that Mij > τ means that an exo-

3Code available at https://github.com/mhd1900/fista_asdi.
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planet is predicted at location (i, j), for some i, j ∈ {1, . . . , N}. For instance,
for model (1), we define M as the spatial map of the average planetary spec-
tra 1

W 1⊤WS reshaped into an N × N image, while in PCA we use the so-called
SNR detection map relying on a two-sample t-test [11]. To compare the perfor-
mance of several ASDI algorithms, we generate Receiver Operating Characteris-
tic (ROC) curves similar to [5]. For a collection of data cubes free of exoplanets,
we inject in each of them one single artificial exoplanet (using the VIP tool-
box [4]) successively at the center of each ball shown in Figure 2. These balls
have a diameter equal to the mean aperture λ̄/D and are located at a distance
of 4λ̄/D, 5λ̄/D, 6λ̄/D from the center of the image.
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Fig. 2: Example of a detection map provided by the solution of model (1) (left) and
the PCA algorithm (right). The red ball contains the injected exoplanet.

For each ball in the detection map, we predict that it contains an exoplanet
if at least one pixel inside the ball is above the threshold τ > 0. Following
this procedure, we count the numbers of True Positives, False Positives, False
Negatives and True Negatives (TP, FP, FN and TN) at a given τ for each data
cube and sum up these TP, FP, FN, TN over all the data cubes to draw the
ROC curves. An advantage of this procedure is that injecting planets with zero
flux will lead to exactly diagonal ROC curves as stated in Theorem 3.1, which
means that any algorithm has no a priori advantage over the others.

Theorem 3.1. Consider m data cubes and m balls, where a single exoplanet is
injected with zero flux at the center of a different ball for each data cube. Then,
TPR = FPR for any detection map M and for any threshold τ .

Proof. See Appendix A.

Numerical experiments: We compare the performance of model (1) solved
using FISTA with the PCA algorithm applied on a version free of exoplanets of
the data cube sphere ifs cube 2 from phase 1 of the EIDC.4 It is composed
of 112 images divided into 39 spectral channels. We subsample the data cube
by selecting temporal images and spectral channels at regular intervals so that
W = 10 and T = 52, and we reduce the size of images to N = 120 to lower the
memory and time complexities. The rank is fixed to r = 30 for PCA and r = 40

4https://exoplanet-imaging-challenge.github.io.
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for model (1) as it was observed to perform the best among the tested values
r ∈ {20, 30, 40, 50}. Regarding the sparsity level, we compare α = 0 with α = 2.
Finally, the parameters of the annular mask Ω are set to Rin = 5λ̄/D and Rout =
12λ̄/D to make model (1) valid inside that mask. To draw the ROC curves, we
generate a collection of 92 data cubes containing a single exoplanet injected in
one of the 92 balls of Figure 2 with a flux of c · σann(λ), where c ∈ {0, 0.25, 0.5}
and σann(λ) is the spatiotemporal standard deviation of the background in an
annulus of 2λ̄/D centered at the location of the injected exoplanet [5, 14]. In
Figure 3, we observe that a zero sparsity level leads to a poor TPR for any
level of injected flux c > 0. On the other hand, at α = 2, the new algorithm
consistently draws a better ROC curve and reaches a better TPR at FPR = 0
for both c = 0.25 and c = 0.5 compared to PCA.
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Fig. 3: ROC curves based on the SNR detection map for PCA and the average spectrum
for model (1) with two sparsity levels α ∈ {0, 2}. Colors correspond to different levels
of injected flux while the line style refer to a specific algorithm.

4 Conclusion and future works

In this work, we have investigated an extention of the model-based method for
exoplanet detection proposed in [14] to manage both ADI and SDI data, by
adopting a convex version of both the low-rank and the sparse constraints to use
FISTA as optimization algorithm. In future research, we will investigate how we
can avoid interpolation of the pixel grid induced by both the rotation and the
scaling operators.

A Appendix

Proof of theorem 3.1: Let E,C ∈ {0, 1}m×m be two matrices such that
Eij = 1 if there is an injection at ball j in data cube i and 0 otherwise,
and Cij = 1 if there is a prediction at ball j in detection map i and 0 oth-
erwise. Without loss of generality, notice that E = Id. Since injected planets



have zero flux, any ASDI algorithm keeps returning the same detection map,
which means that ∃c ∈ {0, 1}m such that C = 1c⊤. By construction, we have
P = m, N = (N + P) − P = m2 −m, TP =

∑m
i,j=1 CijEij = tr(C) = 1⊤c and

FP =
∑m

i,j=1 Cij(1 − Eij) = 1⊤C1 − 1⊤c = (m − 1)1⊤c. Hence, FPR = FP
N =

(m−1)1⊤c
m2−m = 1⊤c

m = TP
P = TPR.
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