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Abstract. We propose a novel neural processing unit for artificial neu-
ral networks, inspired by the memristive properties of nanowires. Our
analysis, framed within the Reservoir Computing paradigm, demonstrates
the stability, short-term memory, and fading memory capabilities of the
unit. Further experiments on assemblies of nanowire-inspired neurons
show promising results in time-series classification tasks. Our introduced
approach bridges analog neuromorphic hardware and AI applications, en-
abling efficient time series processing.

1 Introduction

Memristive nanowire-based neurons offer a novel and promising approach to neu-
romorphic computing. Leveraging the unique properties of memristors-electronic
components whose resistance changes based on the history of applied voltage-
these neurons emulate the dynamics of biological systems, particularly synaptic
plasticity [1]. Memristors’ inherent ability to “remember” past electrical states
makes them ideal candidates for simulating temporally dynamic processes such
as short-term plasticity, a cornerstone of adaptive neural computation. In neuro-
morphic systems, memristors are gaining traction as efficient analog components
for replicating the complex dynamics of biological memory [2]. However, to in-
tegrate the realism of their continuous-time physics into digital Artificial Neural
Networks (ANNs), discrete-time modeling is essential. Such adaptation bridges
the gap between analog hardware and digital frameworks, enabling memristor-
inspired neurons to be deployed within existing ANN architectures. This paper
introduces a novel discrete-time model for a neural processing unit based on the
physical principles of memristive nanowires. The model approximates the con-
ductance dynamics of memristors and casts them as artificial neuron dynamics,
making it suitable for digital systems. By adopting a Reservoir Computing (RC)
framework [3], we analyze the stability, memory, and non-linear response of the
proposed model, disentangling its intrinsic architectural properties from specific
learning algorithms. Our analysis, further supported by preliminary experiments
on classification tasks, paves the way for its application in time series processing,
where short-term memory and adaptive nonlinear dynamics are critical.

∗This work has been supported by NEURONE, a project funded by the European Union
- Next Generation EU, M4C1 CUP I53D23003600006, under program PRIN 2022 (prj code
20229JRTZA), and by and EU-EIC EMERGE (Grant No. 101070918).



2 From Physics to a Single Neuron Memristive Nanowire
Model

In [1], an ODE modeling the dynamics of a nanowire-based memristor is pro-
posed. Such a model gives us the opportunity to draw a parallel between the
physical properties of the memristor and neural mechanisms. Conductance in
the memristor can represent the activation of a neuron (or hidden state), while
the applied voltage acts as the external input to the neuron, as shown in Table 1.
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Continuous-time Discrete-time
Conductance Hidden state

Voltage Input

Table 1: Short
concept table linking
physical and compu-
tational perspectives.

The conductance changes based on a potentiation-depression rate balance
equation, which governs how the neuron’s state adapts in response to voltage
inputs over time. The corresponding ODE for the nanowire network system is:

dh

dt
= kp · (1− h)− kd · h, (1)

where kp = κp0
· eηpV and kd = κd0

· e−ηdV . Here, the variable h models the
normalized conductance of the nanowire memristors, and V is the applied in-
put voltage. The constants κp0, κd0, ηp, ηd represent physical quantities defining
the nanowire material response to electrical stimulation. Physical constraints
require κp0, κd0, ηp, ηd > 0, and 0 ≤ h ≤ 1. eq. (1) captures the ability of a bio-
logical neuron to increase or decrease its conductance, mimicking how biological
synapses strengthen or weaken temporarily based on recent activity.

2.1 The single neuron memristive nanowire model

We cast the physical nanowire memristive model into a single neural processing
unit discretizing eq. (1) via the forward Euler numerical scheme, as follows:

h(t+ 1) = h(t) + ∆t

(
kp(x(t+ 1))− [kp(x(t+ 1)) + kd(x(t+ 1))]h(t)

)
, (2)

where ∆t is a step size hyper-parameter for the numerical integration. Remark-
ably, a unique feature of this neural unit is its non-linearity. In fact, kp(x(t))
and kd(x(t)) provide a distinctive non-linear encoding of the time series x(t),
represented by a sum of the following two exponential functions:

kp(x(t)) = κp0
· eηpx(t), kd(x(t)) = κd0

· e−ηdx(t). (3)

This creates an asymmetric and strongly non-linear response that differs from
conventional artificial neurons that use tanh or ReLU activations. The result-
ing neuron exhibits strongly nonlinear temporal dynamics, making it particu-
larly suited for applications requiring short-term adaptive responses and quick-
switching temporal behaviors.



3 Stability analysis

We aim to exploit the dynamical system eq. (2) as the recurrent unit of a re-
current neural network. Thus, we need to ensure eq. (2) converges to a stable
state when driven with generic inputs, a stability requirement known as echo
state property for RC networks [4]. An asymptotically stable input-driven so-
lution ensures that the recurrent dynamics have reliable behavior, preventing
unbounded responses and enabling consistent processing of sequential data. In
the following theorem, we provide conditions under which eq. (2) admits an
asymptotically stable input-driven solution.

Theorem 3.1. If |1−∆t(kp(x(t+1))+ kd(x(t+1)))| < 1, for all t > 0, then it
exists a unique input-driven solution that attracts all trajectories. Moreover, if
the input x(t) varies sufficiently slowly, then such a unique input-driven solution

closely follows the moving fixed point h∗(t) =
kp(x(t+1))

kp(x(t+1))+kd(x(t+1)) .

Proof. For the sake of brevity, in this proof, we denote kp(x(t+1)) and kd(x(t+

1)) simply as kp(t) and kd(t). Let be given two initial conditions h(0), ĥ(0), from

which follow two x(t)-driven trajectories h(t), ĥ(t). Then, by a few algebraic
manipulations and the triangle inequality, we get:

|h(t+ 1)− ĥ(t+ 1)| =

=
∣∣∣h(t) + ∆t

(
kp(t)− [kp(t) + kd(t)]h(t)

)
−ĥ(t)−∆t

(
kp(t)− [kp(t) + kd(t)]ĥ(t)

)∣∣∣
= |(h(t)− ĥ(t))

(
1−∆t[kp(t) + kd(t)]

)
| ≤ |h(t)− ĥ(t)|

∣∣1−∆t[kp(t) + kd(t)]
∣∣.

By recursion we have that |h(t+ 1)− ĥ(t+ 1)| ≤ |h(0)− ĥ(0)|
∣∣1−∆t[kp(t) +

kd(t)]
∣∣t+1

. By hypothesis
∣∣1 − ∆t[kp(t) + kd(t)]

∣∣< 1, therefore limt→∞ |h(t +
1) − ĥ(t + 1)| = 0. Necessarily, the system asymptotically converges towards a
unique input-driven solution. Now, assume a constant input x(t) ≡ x∗, which
is an infinitely slowly varying input signal. We have that a fixed point h∗ must
satisfy the equation h∗ = h∗ + ∆t

(
kp(x

∗) − (kp(x
∗) + kd(x

∗))h∗), thus it must

have the following form h∗ =
kp(x

∗)
kp(x∗)+kd(x∗) . If the input x(t) varies slowly and

the quantity |1−∆t[kp(t) + kd(t)]| is small, then the system quickly approaches

the slowly varying fixed point h∗(t) =
kp(t)

kp(t)+kd(t)
.

The quantity ρ(t) = |1 −∆t[kp(x(t + 1)) + kd(x(t + 1))]| regulates the rate
of convergence towards the unique attracting solution. The closer to zero this
quantity, the faster the forgetting of the initial condition, i.e., the stronger the
fading memory. For this reason we call ρ = supt>0 ρ(t) the (fading) memory
factor. Differently from the continuous time model eq. (1), in the discrete time
version of eq. (2) there is the possibility of unstable single neuron dynamics,
e.g. a too large ∆t might cause wildly oscillating dynamics. For this reason, we
introduce another hyper-parameter, ω, that we call input scaling, whose role is
to tune the amplitude of the input, basically replacing x(t) with ωx(t).



4 Experiments

We study the properties of the single nanowire neuron by analyzing the influence
of some specific parameters on its activation and memory factor. We also test the
capabilities of the single unit by evaluating an ensemble of uncoupled neurons in
classification tasks. The single neuron memristive nanowire model has a total of
six hyper-parameters, ∆t, ηp, ηd, κp0

, κd0
, ω. We pursue an experimental analysis

focusing on the two hyper-parameters that stem from our informatics-based
modelization, namely ∆t and ω, and keep the physics-based hyper-parameters
to the values in Table 2, derived in a neuromorphic experimental setting [5].

Hyper-parameter κp0 κd0 ηp ηd
Value 0.0001 0.5 10 1

Table 2: Physics-based hyper-
parameters used in experiments.

Response to input pulses. We analyze the dynamics of a single neuron
model under varying conditions, focusing on the evolution of the activation state
h(t) and its response to changes in the discretization step ∆t (Fig.1 left) and
input scaling ω (Fig.1 right). In the left plot, we apply an input pulse from time
step 30 to 40. Observe that smaller ∆t gives slower convergence to the moving
fixed point, where the larger transient is the effect of a greater memory factor.
Note also that different values of ∆t give different responses in the activation
amplitude. This is because the system is slower in the convergence towards the
new fixed point induced by the forcing of the input. A similar behavior can
be seen in the right plot, where larger values of ω result in wider amplitude
responses and slower convergence rates to the fixed point. As expected, the
prolonged tails in the response curves are in line with the theoretical analysis
in the previous section, proving that the two hyper-parameters ∆t and ω play a
crucial role in the dynamical properties of the model.

Fig. 1: Neuron ac-
tivation h over time
for different discretiza-
tion step sizes ∆t (left,
with ω = 0.1 between
timesteps 30 and 40,
ω = 0 otherwise) and in-
put pulse amplitudes ω
(right, with ∆t = 0.1).

Memory Factor. The memory factor ρ is a function of all hyper-parameters
(∆t, ηp, ηd, κp0

, κd0
, ω). Fig. 2 illustrates how ρ varies with different discretiza-

tion steps ∆t and input scaling values ω. The results show that for small ∆t

(approximately ∆t < 0.1), the ω becomes less influential on the variation of ρ.
In contrast, for relatively large values of ∆t, a specific range of ω is necessary to



maintain ρ ≈ 1, ensuring longer short-term memory and better performance in
temporal tasks requiring greater memory retention.

Fig. 2: Memory factor ρ as a
function of the discretization
step ∆t and input scaling ω.
The heatmap illustrates how ρ
varies with different combina-
tions of time step size and in-
put scaling, with ρ values rep-
resented by the color intensity.

Time-series classification with neuronal assemblies. We construct an
assembly of uncoupled nanowire neurons and evaluate its generalization capa-
bilities in time-series classification tasks. These experiments compare the per-
formance of nanowire neuron assemblies with conventional uncoupled leaky in-
tegrator neurons with tanh(·) activation function [6], using an RC setup [7].
In this framework, training is restricted to the output layer, implemented as a
ridge classifier. For assemblies of uncoupled neurons, we use input scaling pa-
rameters to introduce heterogeneity in the neurons’ responses. Specifically, the
effective input scaling for each neuron is defined as ω = ω0 ± ∆ω, where ω0 is
the center of the interval and ∆ω introduces variability across the neurons. For
the tanh case, we set ω0 = 0. This approach ensures diverse dynamics within
the assembly, potentially enhancing the overall classification performance. Input
preprocessing and scaling were guided by insights from heatmap analysis (Fig.
2), and an additional check on ρ < 1 was enforced to ensure system stability
at a preprocessing level. The hyper-parameters explored during model selection
were determined by grid search and are summarized in Table 3, for reservoir
layer sizes of 100, 500, and 1000.

Neurons Hyper-parameters Values

Nanowire
input scaling ω0 {0.1, 0.5, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.5, 2}
input scaling variability ∆ω {0.001, 0.01, 0.1, 0.5, 1, 1.5, 2}
discretization time ∆t {0.01, 0.1, 0.15, 0.2, 0.25, 0.5, 1}

Tanh

leaking-rate α {0.1, 0.3, 0.5}
input scaling variability ∆ω {0.1, 0.5, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.5, 2}
bias scaling β {0.001, 0.1, 1}
spectral radius ρ {0.8, 0.9, 0.95, 0.99}

Table 3: Values of the hyper-parameters explored during model selection for the dif-
ferent types of uncoplued neurons used in the experiments. For tanh-based reservoirs,
we explored conventional Echo State Network hyper-parameters (see [7] for details).

Fig. 3 shows the accuracy of uncoupled nanowire neurons (blue) and un-



coupled tanh neurons (orange) on the ECG5000 and SyntheticControl datasets1

across different reservoir layer sizes. Notably, nanowire neurons demonstrate
higher or comparable accuracy for both tasks, suggesting their enhanced expres-
sivity, as well as their good potential for these kinds of application.

Fig. 3: Accuracy comparison be-
tween different numbers of uncoupled
nanowire neurons (blue) and leaky in-
tegrator neurons based on tanh acti-
vation (orange) on the ECG5000 and
SyntheticControl classification tasks.
For each reservoir layer size, namely of
100, 500, and 1000, the model selection
has been performed by grid search as
detailed in Table 3.

5 Conclusions

We have introduced a novel discrete-time model for dynamically driven neural
processing units, inspired by the physical principles of memristive nanowire hard-
ware. Through an analysis framed within the Reservoir Computing paradigm,
we demonstrated the model’s stability, fading memory, and adaptive response ca-
pabilities. Preliminary experiments on time-series classification tasks validated
the potential of the introduced nanowire-inspired neurons, achieving compet-
itive performance when compared to Echo State Network-like systems using
traditional tanh activation function.

Future research will focus on coupling strategies for the proposed neuron
model in densely connected networks, aiming to unlock its full potential for
broader applications in both reservoir-based and fully trainable systems.
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1From the UCR archive at http://timeseriesclassification.com/


