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Abstract.

We propose a novel approach for skin lesion classification that leverages a
transformer architecture to integrate diverse clinical information (dermo-
scopic images, segmentation maps, and patient clinical information) for
more accurate diagnosis. By incorporating binary semantic segmentation
maps as input, we directly provide the model with border details critical
for distinguishing between benign and malignant lesions. This integration
improves classification performance compared to models that use only der-
moscopic images or clinical data. To the best of our knowledge, this is the
first application of segmentation maps to enhance skin lesion classification.
Our experiments on the ISIC dataset yield promising results, highlighting
the potential of combining advanced transformer models with multimodal
data for improved dermatological diagnostics.

1 Introduction

Early diagnosis of malignant melanoma (MM) is critical but remains a challeng-
ing task in dermatology. Timely detection is essential for reducing MM mortality
rates, which accounted for approximately 59,000 deaths worldwide in 2022 alone
[1]. Dermoscopic examination is the primary diagnostic tool for MM, but its
effectiveness is substantially influenced by the dermatologist’s expertise and the
subjective interpretation of dermoscopic features within melanocytic skin lesions
(MSLs) [2, 3]. To assist clinicians and improve diagnostic accuracy, automated
tools leveraging deep learning have emerged. While Convolutional Neural Net-
works (CNNs) have been widely used for skin lesion classification [4, 5], newer
architectures like Vision Transformers (ViTs) offer advantages in modeling global
context [6, 7, 8] and integrating multimodal data. Previous studies have focused
on incorporating additional data such as macroscopic images and metadata to
create multimodal inputs [9, 10, 11, 12]. In this paper, we introduce a novel ap-
proach that leverages transformer architectures to integrate dermoscopic images,
binary semantic segmentation maps (lesion and background), and clinical data
for enhanced skin lesion classification. By carefully designing the integration
of skin lesion segmentation maps as inputs, we provide the model with crucial
border details that help determine whether a lesion is benign or malignant. This
approach aligns with clinicians’ emphasis on lesion borders and shapes in their
diagnostic process. To the best of our knowledge, we are the first to use seg-
mentation maps as additional input to skin lesion classification models. Unlike



previous studies that incorporate dermoscopic images and metadata for multi-
modal inputs, our method integrates segmentation maps to enhance the model’s
understanding of lesion morphology. In our experiments, we modified the Sim-
ple ViT [13] model to integrate dermoscopic images, segmentation maps, and
patient clinical data. The results on the ISIC dataset demonstrate that this
integrated approach improves classification accuracy, offering a promising direc-
tion for automated skin cancer diagnosis. The paper is organized as follows.
In Section 2, the experimental setups and the Simple ViT model are described
together with the ISIC dataset; then, the results are presented and discussed in
Section 3. Finally, Section 4 collects conclusions and future perspectives.

2 Materials and Methods

2.1 ISIC Dataset

The International Skin Imaging Collaboration (ISIC) dataset is a comprehensive,
publicly accessible repository of high-quality dermoscopic images, designed to
support advancements in skin lesion analysis and melanoma detection. The
dataset encompasses a wide variety of skin lesions, including benign nevi and
malignant melanomas, accompanied by detailed metadata and diagnostic labels.
Regularly expanded through annual ISIC challenges, the dataset now includes
tens of thousands of images, ensuring consistency and quality for robust model
development. In this study, we utilized images from the ISIC challenges held in
2017, 2019, and 2020. Duplicate images were removed following the methodology
described in [14]. Since the 2017 and 2019 challenges were designed for multiclass
classification tasks, we converted their labels to binary classification (melanoma
vs. non-melanoma) to match the format of the 2020 challenge. Segmentation
maps for all images were generated using the approach proposed in [15]. For
validation, we randomly selected 20% of the 2020 dataset, preserving its original
class distribution of approximately 10% melanomas. The remaining 2020 images
were merged with those from the 2017 and 2019 datasets to form the training
set. To mitigate class imbalance, melanoma cases in the training data were
oversampled to equalize the number of non-melanoma images. This process
resulted in a training set of 93,170 images and a validation set of 6,531 images.
The test set consisted of the original ISIC 2020 test set, comprising 10,982 images
without publicly available annotations. Consequently, all reported results were
obtained through the official submission server for the ISIC 2020 challenge on
Kaggle1.

2.2 Simple ViT Model

Simple ViT [13] is a streamlined variant of the ViT [16] tailored for image classi-
fication. Unlike conventional CNNs, which utilize convolutional layers to model
spatial hierarchies, Simple ViT employs a transformer-based architecture that

1https://www.kaggle.com/c/siim-isic-melanoma-classification/

https://www.kaggle.com/c/siim-isic-melanoma-classification/


represents images as sequences of patches. Each image is divided into fixed-
sized patches, which are linearly embedded and treated as input tokens for the
transformer. Through self-attention mechanisms, the model learns global rela-
tionships among these patches, enabling it to capture both local and long-range
dependencies in the image. A distinctive feature of Simple ViT is its simplicity
and modularity, with fewer design complexities compared to more sophisticated
vision transformers. This model comprises a straightforward embedding layer
to process patches, a series of transformer blocks for attention and feed-forward
operations, and a final classification head that generates the output predictions.

2.3 Experimental Setup

This paper presents a preliminary investigation into the impact of incorporat-
ing segmentation maps as an additional input to a transformer model (Simple
ViT) for classifying malignant skin lesions. Segmentation maps can enhance
the model’s ability to focus on the lesion area and, more importantly, provide
explicit information about lesion boundaries — a critical feature for dermato-
logical analysis. This study aims to determine whether directly supplying this
boundary information improves classification performance. Although the model
can independently learn lesion boundaries, explicitly providing this information
can simplify the learning process and enable it to focus more effectively on cap-
turing finer details. We evaluated two strategies for integrating segmentation
maps into the transformer input (Figure 1).

1. Token level concatenation (Token-concat) - Image and segmentation to-
kens are concatenated along the token dimension, effectively doubling the
total number of tokens while keeping each token’s feature dimensionality
fixed at 1024.

2. Feature level concatenation (Feature-concat) - Each image token is con-
catenated with its corresponding segmentation token along the feature di-
mension, preserving the total number of tokens but increasing each token’s
feature dimensionality to 2048.

In both approaches, segmentation patches are generated identically to image
patches, with positional encoding applied to ensure that corresponding image
and segmentation patches share the same position identifiers. To assess the
impact of incorporating segmentation maps, we compared the two proposed
approaches against two baseline Simple ViT models trained exclusively on im-
age data. We conducted two experiments to compare networks with the same
number of parameters. In the first, we compared Baseline1024 with a ViT
model using the Token-concat strategy, keeping the input embedding dimen-
sion at 1024. In the second, using the Feature-concat strategy, we concatenated
1024-dimensional embeddings of images and segmentation maps to create a 2048-
dimensional input. This network was compared with Baseline2048, which also
has a 2048 input dimension, ensuring both models had the same number of
parameters.



Fig. 1: Concatenation strategies employed to combine images and segmentation maps.

Finally, we aimed to assess the impact of incorporating patient metadata
into the model (Figure 2). To integrate metadata, we adapted the Simple ViT

Fig. 2: Incorporating patient metadata in the model.

architecture by adding an initial three-layer Multilayer Perceptron (MLP) ded-
icated to processing the metadata. Starting from a size-twelve input the MLP
gradually increases the feature dimensionality to match the transformer’s output
dimension, equal to its input dimension. This representation is then concate-
nated with the transformer’s encoding. The resulting combined representation
is then passed through the final classification layers. Using this architecture,
we evaluated the impact of metadata in all the previously described configu-
rations: Simple ViT model integrated with segmentation in both Token-concat
and Feature-concat setups (Token-concat + Metadata and Feature-concat
+ Metadata), as well as in the two baseline models without segmentation
(Baseline1024 + Metadata and Baseline2048+Metadata). For all exper-
iments, we adopted the same hyperparameters used in the original Simple ViT
study [13]2. Furthermore, various augmentation techniques, including rotation,
flipping, and adjustments to brightness, contrast, and color, were applied during

2Image size: 256× 256; Patch size: 16; Transformer depth: 6; Transformer heads: 8; Final



training to expand the dataset. The validation set was utilized for early stopping
to prevent overfitting.

3 Results

In Table 1 we present the results obtained using the experimental setup detailed
in Section 2.3. Since the test set labels are not publicly available, the results for
this set were obtained through the ISIC 2020 challenge submission server.

Test set Validation set
Setup AUC private AUC public AUC
Baseline1024 0.8505 0.8706 0.8644
Baseline1024 + Metadata 0.8441 0.8727 0.8654
Token-concat 0.8663 0.8719 0.8701
Token-concat + Metadata 0.8629 0.8772 0.8730

(a) Performance with token dimension equal to 1024

Test set Validation set
Setup AUC private AUC public AUC
Baseline2048 0.8546 0.8592 0.8728
Baseline2048 + Metadata 0.8615 0.8680 0.8728
Feature-concat 0.8634 0.8843 0.8774
Feature-concat + Metadata 0.8694 0.8888 0.8905

(b) Performance with token dimension equal to 2048

Table 1: Comparing baseline models with those incorporating segmentation and metadata
using Area Under the Receiver Operating Characteristic Curve (AUC).

The results demonstrate that incorporating segmentation maps improves per-
formance compared to baseline models in both configurations (Token-concat and
Feature-concat). Specifically, the concatenation of segmentation maps along the
feature dimension (Token-concat configuration) is the most effective. This may
be because this approach directly correlates image features with segmentation
patches at corresponding locations, while token-based concatenation in the TLC
setup requires the model to infer these positional correspondences through po-
sitional embeddings.

The same trend is evident when metadata is included during training, further
validating the benefit of using segmentation maps.

4 Conclusions

In this study, we evaluate the impact of incorporating segmentation maps as
additional input to a Vision Transformer (ViT) for skin lesion classification. We
adapted the Simple ViT model to integrate information from dermoscopic im-
ages, segmentation maps, and patient clinical data. Experiments on the ISIC
dataset show that segmentation maps improve classification performance com-
pared to models using only dermoscopic images or a combination of images and

MLP dimension: 2048; Learning rate: 0.001; Batch size: reduced to 110 to accommodate the
memory constraints of the employed NVIDIA GeForce RTX 4090 GPU.



clinical data. By providing explicit border details, this approach aligns with
clinicians’ emphasis on such features and highlights the potential of leveraging
multimodal data to enhance diagnostic accuracy in dermatology. To our knowl-
edge, this is the first study to utilize segmentation maps as input for skin lesion
classification. Future work could explore incorporating metadata directly into
the transformer’s input for a unified processing framework and examine the role
of segmentation maps under different models’ hyperparameters, such as image
and patch size.
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