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Abstract. The increasing popularity of deep learning on graphs has mo-
tivated the need for the co-design of hardware and graph representation
models. We propose Randomized Ising Model (RIM), a reservoir com-
puting model for encoding topological information of graph nodes, that
is amenable to physical implementation via neuromorphic hardware. Our
experiments demonstrate that RIM’s node embeddings are able to provide
sufficient topological information to be suitable to address node classifica-
tion tasks, exhibiting an accuracy in line with Graph Echo State Networks.

1 Introduction

Deep learning on graph has recently enjoyed an ever-increasing popularity on
a wide range of applications, since diverse data such as molecular compounds,
protein interactions, social networks, etc. can be all represented as graphs. As
a consequence, a plethora of graph models have been proposed to address those
application as learning problems on graphs [1]. However, since both the dimen-
sion of graph data to be processed as well as the dimension of deep learning
models is approaching scales that stretch the capabilities of currently available
computational resources, the need to rethink both the design of graph model
and computing hardware arises. A promising line to address these challenges
has sprung up at the intersection of two research fields: reservoir computing and
neuromorphic computing [2]. In the reservoir computing paradigm, input data
is encoded via a randomly-initialized reservoir, while only a readout classifier for
the downstream task requires training. Graph Echo State Networks (GESN) [3]
are an efficient model for graph representation that follows this approach. The
feasibility of a GESN implementation on memristive neuromorphic hardware has
been recently explored, showing promising results on node and graph classifica-
tion tasks [2]. In this paper, we propose Randomized Ising Model (RIM) as a
neuromorphic reservoir-based model for encoding graph topological information
as the spin configuration of a Lenz–Ising mathematical model of ferromagnetic
interaction. As a proof-of-concept, we perform simulations instead of physically
implementing our model, and we focus the experimental analysis to assess the
ability of RIM’s node embeddings to encode the topological information neces-
sary to address node classification tasks as effectively as other methods.



2 Representing topological information in nodes

Let G(V, E) be a graph with set of nodes V and set of edges E ⊆ V × V. We
denote by N (v) the neighborhood of node v, and by A the graph adjacency
matrix. A node embedding vector hv ∈ RH should encode enough information
on the graph topology to represent the node’s relationship with the rest of the
network it belongs to. Several approaches have been proposed so far to obtain
such embeddings, briefly surveyed as follows.

Positional encoding As the transformer architecture has been generalized from
sequences in natural language processing to graph learning [4], positional en-
codings (PE) have been generalized to represent the position of a node within
the graph topology. Laplacian PE (LPE) adopt the H leading eigenvectors of
the symmetric graph Laplacian matrix L = I −D−1/2AD−1/2, where D is the
degree matrix, as the node positional encoding. Laplacian eigenvectors have
previously been applied in tasks such as spectral clustering of graph nodes [5].
Random-walk PE (RWPE) are instead computed as the diagonal entries of the
first H powers of the random walk matrix AD−1 [6]. For both PEs, the compu-
tational cost becomes cubic in the number of nodes as the embedding dimension
H approaches |V|.

Representation learning Neural models for graphs consisting of a deep hierarchy
of L convolutional layers that perform local aggregation of node features are
most popular approach for learning node representations. Among the plethora of
models proposed in literature [1] that differ just by the type of convolution layer,
we consider two examples in this paper. GCN [7] defines its convolution operation
as h(ℓ) = ReLU

(
D−1/2AD−1/2 h(ℓ−1) W(ℓ)

)
, whereas GIN [8] defines it as h(ℓ) =

MLP(ℓ)
(
(I+A)h(ℓ−1)

)
, where MLP(ℓ) is a multi-layer neural networks. Both

the weighs W(ℓ) and the parameters of MLP(ℓ) in each layer are trained end-to-
end with the downstream task, which uses the final layer representations h(L)

as node embeddings.

Reservoir computing Graph Echo State Networks (GESN) [3] are an efficient
model within the Reservoir Computing (RC) paradigm. To encode graph topol-
ogy, node embeddings are recursively computed by the dynamical system

h
(k)
v = tanh

(
win +

∑
v′∈N (v) Ŵh

(k−1)
v′

)
, h

(0)
v = 0, (1)

where win ∈ RH and Ŵ ∈ RH×H are the input-to-reservoir and the recurrent
weights, respectively. Reservoir weights are randomly initialized from a uniform
distribution in [−1, 1], and then rescaled to the desired input scaling and reser-
voir spectral radius, without requiring any training. Previous results [9] have
demonstrated that GESN is particularly effective in encoding topological infor-
mation when ρ(Ŵ) ≫ 1/ρ(A), where ρ(A) denotes the graph spectral radius,
i.e. the largest absolute eigenvalue of its adjacency matrix A. In this case, as



the dynamical system does not converge [10], equation (1) is iterated over for
a number of steps K at least as large as the graph diameter [9]; the final state

h
(K)
v is used as the node embedding.

3 Randomized Ising models for node embedding

Lenz–Ising models [11] are mathematical models that represent magnetic inter-
actions in statistical mechanics. The model consists in a set of discrete variables
hi that represent magnetic spins that can assume the two values ±1. A particu-
lar assignment of spin values h is called a spin configuration. The probability of
the system assuming a particular configuration is given by the Boltzmann dis-
tribution with inverse thermodynamic temperature β ≥ 0, Pβ(h) = e−βE(h)/Zβ ,
where E(h) is the energy of the configuration and Zβ is the partition function.

We propose to employ the spin configuration as a way to encode node rep-
resentations in a graph. To this end, we define the energy function of our Ising
model as the Hamiltonian

E(h) = −h⊤(A⊗ Ŵ)h, (2)

where the interaction matrix A⊗ Ŵ is defined as the Kronecker product of the
graph adjacency A and a random matrix Ŵ ∈ RH×H . The spin configuration
h ∈ R|V|H is partitioned in groups of H spins, each of whom corresponds to a
node embedding hv. We call our model RIM for Randomized Ising Model.

The Ising model defined in equation (2) presents no external magnetic field.
In this paper, we further assume that the random matrix Ŵ is sparse, symmetric,
with ±1 entries sampled from an unskewed Bernoulli distribution, and that the
system is at near-zero thermodynamic temperature, i.e. β → ∞. In this setting,
for the particular case H = 1, our Ising model is analogous to a Curie–Weiss
model [12], inducing local energy minima at near-zero besides the two ground
state spin configurations h = ±1. Those local minima have been demonstrated
to correspond to non-trivial solutions to the MINCUT problem, thus hinting at
the topological informative content that RIM’s node embedding can provide.

As a general mathematical model, RIM can be physically implemented by un-
conventional computing techniques such as memristive circuits [13] or spintronic
devices [14]. Our experiments simulate the Ising model via the Metropolis–
Hastings algorithm, a well-established Markov chain Monte Carlo method to
approximate high-dimensional distributions by iterative sampling.

4 Experiments and discussion

As a practical approach to measure the quality of node embeddings, we rely
on their effectiveness as representations for semi-supervised node classification
tasks. Node embeddings hv are used as features for a linear readout classifier
yv = Wout hv + bout. The weights Wout ∈ RC×H ,bout ∈ RC are trained by
ridge regression on one-hot encoding of target class yv ∈ 1, ..., C for all models



Encoding model Cora CiteSeer PubMed

Baseline 28.9± 2.2 20.6± 2.2 39.7± 0.5
LINK 75.4± 2.5 58.3± 2.8 77.1± 0.9

Positional encoding

{
LPE 82.9± 1.3 67.4± 0.3 82.2± 0.5
RWPE 34.1± 2.0 29.3± 2.8 OOT

Representation learning

{
GCN 56.8± 3.3 37.2± 3.6 62.6± 1.3
GIN 71.2± 2.3 50.4± 4.9 70.6± 2.0

Reservoir computing

{
GESN 84.0± 1.2 61.8± 5.7 82.5± 0.6
RIM 84.2± 1.1 62.4± 4.9 81.7± 0.6

Table 1: Node classification accuracy, average over 10 folds with standard devia-
tion. Our proposed model is highlighted. The majority class baseline is reported
for reference. ‘OOT’ denotes that computation exceeded 3 hours.

except GCN and GIN, where the embedding models and the readouts are trained
end-to-end.

We perform our experiments on the popular node classification tasks Cora,
CiteSeer, PubMed without input features, following the public 10-fold scaffold
training/validation/test splits of [15]. For RIM, we fix the sparsity of Ŵ at
100 non-zero entries per row; we average the results over 5 Metropolis–Hastings
simulations with different random initial spin configurations and number of it-
erations 50|V|H. For GESN, we explore the same hyper-parameter ranges of
[9]. GCN and GIN are trained via Adam optimizer with early stopping for 2500
epochs with cross-entropy loss, selecting the number of layers L ∈ {1, ..., 5}, the
learning rate in {10−2, 10−3}, and the weight decay in {0, 10−5, 10−3}. In all
models we consider embedding dimension H ∈ {24, ..., 212}.

In addition to the models of Sec. 2, we report also the accuracy of the
majority-class baseline and of LINK, which uses directly the rows of A as node
embeddings. The results of Tab. 1 show that all embedding model are able to
perform better than the baseline, a sign that topological information is required
to address the tasks. Despite its high computational cost, RWPE performs
barely above the baseline. Both representation learning models GCN and GIN
perform significantly worse than LINK on all three tasks. On Cora, RIM achieves
top accuracy, closely followed by GESN and LPE. On CiteSeer, LPE is instead
the best performing node embedding, followed at a significant distance by RIM
and GESN; however, the accuracy of LPE must be considered together with
its demanding computational cost of O(|V|3) due to the eigendecomposition of
L. Finally, on PubMed, GESN is the achieves top accuracy, closely followed by
LPE and RIM. Overall, the experiments demonstrate that the reservoir comput-
ing models, namely GESN and our proposed RIM, generally rank as the best
accuracy models, achieving similar performance on the considered tasks.

In Fig. 1 we report the node classification accuracy as a function of the em-
bedding dimension for the three best-performing models of Tab. 1. The analysis
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Fig. 1: Node classification accuracy as a function of embedding dimension H for
LPE, GESN and our proposed model RIM.

confirms that LPE requires an embedding dimension large enough to bring its
computational cost close to cubic in order to match or improve the accuracy of
reservoir computing models. While GESN achieves better accuracy compared to
RIM for smaller embedding dimensions, the gap closes as both reservoir models
arrive at similar performances for H = 212. This suggests the need for physical
implementations of RIM to be able to scale to large number of spin units.

5 Conclusion and future directions

In this paper, we have proposed Randomized Ising Model (RIM) as a reservoir-
based model for node embedding amenable to physical implementation on neu-
romorphic hardware [13, 16, 14]. As a proof-of-concept, we have simulated RIM
on three citation networks to evaluate its effectiveness in encoding graph topol-
ogy sufficiently well to address node classification tasks. The experiments have
demonstrated that RIM performs in line with Graph Echo State Networks, a
different reservoir computing model that has recently been considered for neu-
romorphic implementation [2].

Building on these preliminary results, in future works we will extend RIM to
take into account also input features in its node encoding. We will also expand
our analysis to consider embedding quality metrics such as Shannon entropy or
Dirichlet energy that are task-independent [17], as well as analyze more in depth
the factors that can affect the properties of Ising models such as thermodynamic
temperature and interaction sparsity [18].
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