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Abstract. In this paper, we present a novel approach to modeling the wear
of complex dynamic systems, exemplified by aircraft engines, through the
construction of a structured latent space. Unlike traditional methods, our
model does not rely on explicit wear data but instead leverages supervised
training to minimize the error on observable system parameters. Beyond
wear forecasting, this work offers a foundation for unsupervised diagnosis,
risk prevention, and the quantification of repair impacts.

1 Introduction

Dynamic system analysis has traditionally relied on methods such as PDEs
(partial differential equation), ODEs (ordinary differential equation), and the
study of their parameters [1]. While effective, these methods have notable
limitations, primarily due to the complexity of the models and the need for
extensive human expertise in the physical aspects of the problem. Recently,
however, the advent of advanced architectures, such as RNNs (LSTM, GRU) and
transformers [2], has made it possible to analyze time series data associated with
complex dynamic systems in new ways. This shift has spurred significant interest
in the aeronautical industry, particularly in the analysis and simulation of aircraft
engine behavior [3, 4]. These efforts are critical for improving engine performance,
optimizing maintenance processes, ensuring safety, and supporting sustainability
initiatives. A significant number of sensors are embedded within aircraft engines
to collect data on engine usage during flights according to specific rules (ACARS).
While these data are abundant and notably noisy, they contain valuable insights
into engine wear. This aspect is important for Prognostic Health Management
(PHM) because, with effective data processing, it may be possible to predict
maintenance needs in advance, thereby reducing engine downtime [5]. Recent
studies have explored this area, including one focused on continuous flight data
[6] and another on the specific case of ACARS [7]. The model in [7] is designed to
predict the Exhaust Gas Temperature (EGT) in aircraft turbofan engines, a vital
metric for assessing engine efficiency and planning maintenance. Using a neural
network structure with recurrent layers and attention mechanisms. This model
focuses on predicting EGT during the cruise phase, which is particularly critical
for maintaining engine performance. It incorporates two attention mechanisms:
one for short-term focus on recent flight data and another for long-term attention
to monitor the engine’s health state over time. Additionally, the model includes a
Gaussian Mixture Model (GMM) to handle performance uncertainties, especially



Fig. 1: SV-LSTM architecture. Schema of the computation of prediction Ŷ i
t

where i is the engine index and t is the cycle since new (temporal). The loss
used is the mean of temporal MSE of each prediction parameter

following maintenance actions like water washes that impact EGT. In this work,
we draw inspiration from this prior work building upon the latter to improve the
parameter prediction model, aiming to better capture engine wear.

2 Data Driven Simulator

2.1 Methodology

The proposed model named SV-LSTM (State Vector learning by an LSTM
architecture), illustrated in Figure 1, adopts an encoder-decoder architecture to
encode information about the dynamic system over a time range leading up to the
prediction point t+ 1. We have the choice between several model to capture the
temporal dependencies like Transformer [2], Mamba [8] and LSTM architecture.
We choose to adopt the LSTM architecture because it’s the simpler model
between the over, and some work was already made on RUL (remaning useful life)
with an LSTM architecture and demonstrate good result [9, 7]. This encoding
process generates a state vector within a latent space, which is the foundation for
predicting system wear parameters at time t+1. To enhance prediction accuracy,
contextual parameters are incorporated. Furthermore, the model integrates an
attention mechanism that processes the sequences (hi)0<i<t+1 and (ci)0<i<t+1,
ensuring the effective integration of the most relevant temporal features. This
architecture introduces a novel methodology for dynamic systems analysis and
wear modeling by structuring a latent space aligned with the wear characteristics
of complex systems. Unlike traditional approaches, such as supervised methods
like survival analysis, which rely on explicit wear data to predict outcomes, this
model employs supervised training to estimate key parameters of the dynamic
system while constructing a wear indicator in an unsupervised manner, thereby
eliminating the dependency on direct wear labels. The table 1 shows a qualitative
comparison of the different modules in our model and others.

Key architectural refinements are implemented to optimize the latent space
for precise wear assessment. Unlike the approach described in [7], this model



Model Self Attention latent vector output Loss function predicted features

model in [7] MLP & Cos similarity state & flight GMM Likelihood 1
SV-LSTM (ours) Cos similarity state Direct values MSE 1 or more

Table 1: The comparison between the SV-LSTMmodel (ours), the model proposed
in [7]. Both models use a latent space to predict outputs; however, the SV-LSTM
model is more lightweight than the [7] counterpart.

omits the lower attention layer used for building flight context vectors, instead
enriching the state vector contexts directly to support effective classification.
In addition, analysis revealed that the flight context vector strongly impacts
target prediction (notably EGT); however, this component can unintentionally
segment engines in the latent space, counteracting the goal of building a cohesive
state vector (explained in figure 3). Additionally, the model opts for direct
prediction over stochastic approaches, leveraging the inherent variability of the
context at each time step to capture stochastic behavior effectively. The model
is also expanded to predict multiple target variables, thus enriching the state
vector to support various metrics and enable a comprehensive understanding of
system health. The loss function is defined as the mean squared error (MSE)
between the predicted time series and the target, ensuring precise optimization
for wear-related predictions.

3 Experiments

3.1 Dataset

To train our model, we utilize data from LEAP-1A engines obtained through
ACARS, providing access to key parameters such as Exhaust Gas Temperature
(EGT), fan speed (N1), core speed (N2), and other critical engine and control
metrics. This dataset is further enriched with meteorological information from the
departure and arrival airports, sourced via METAR and SATAVIA database. This
additional data includes METAR reports and pollution metrics, encompassing
variables like wind speed and direction, pollution levels across locations, humidity,
and other environmental factors, offering a comprehensive dataset to enhance
model performance.

3.2 Numerical comparison

To evaluate our model’s performance, we compared it against the model proposed
in [7], focusing on two key aspects. The first is the prediction accuracy of the
target parameters, where the prediction error is quantified using the Root Mean
Square Error (RMSE). The second aspect involves analyzing the structure of the
latent space formed by the state vectors generated by the model. This analysis
is essential for enabling comparisons between engine states, providing valuable
insights into engine wear and its progression.

Since our model outperforms the baseline (Figure 2), it allows a meaningful



Fig. 2: RMSE of different model (model in [7], SV-LSTM (ours)) for 20 engines.
We see that our model outperform the model in [7] by far.

comparison of the latent spaces generated by the models, with the goal of
facilitating classification. Specifically, we aim to establish a direct correlation
between the position in the latent space and wear in average EGT. The average
EGT is calculated by generating EGT values across various contexts in the
dataset. This approach is motivated by the fact that all three models are trained
to predict parameters for the next time step based on a state vector derived
from prior data. Given that wears are inherently continuous phenomena, the
model incrementally adapts to capture these trends. However, when a repair
occurs, the engine’s state undergoes a sudden shift, which the model cannot
immediately account for. Consequently, the model requires an acclimation period
— approximately 200 flights — to realign with the new engine state. This period,
however, can be significantly shortened by resetting the hidden states of the
LSTM to zero, effectively reinitializing the model to align with the updated state
vector.

Figure 3 demonstrates that the projected space of our model, regardless
of the number of components chosen, remains independent of the number of
engines used in its calculation. This is a crucial finding, as it suggests that the
distribution—at least the portion captured by PCA—is consistent across all
engines. This consistency enables all engines to be represented within a unified
projection, which significantly streamlines the interpretation and visualization of
the state vector.

4 Wear comprehension due to state latent space

Developing an aircraft engine wear model presents significant challenges, primar-
ily due to the variability of flight conditions. This variability prevents direct
comparisons between engines, as each follows a unique wear trajectory. Neverthe-
less, many engines exhibit common wear types, such as degradation in the HPT
module (High Pressure Turbine). By leveraging the predictive model of ACARS



(a) model in [7] (b) SV-LSTM (ours)

Fig. 3: Variance ratio explained comparison between model in [7] (3a) and SV-
LSTM (3b), for different data set size (number of engines in dataset) for different
number of eigenvalues retained. We see a big decreasing of the explained variance
ratio for the figure 3a but not for SV-LSTM model (3b).

parameters, alongside the constructed state vector and the context of the next
flight, it becomes possible to establish an analogy between the latent space and
the engine wear space. This wear space becomes increasingly detailed as the
independence of the predicted parameters improves. The wear space provides
two key perspectives: the current engine state (its position within the space) and
its dynamics (how the state evolves over time). These insights enable the unsu-
pervised identification of engine wear. Exhaust Gas Temperature (EGT) serves
as a particularly effective indicator, though this approach is equally applicable to
other variables influenced by wear, provided all other factors remain constant.
This methodology facilitates a deeper understanding of engine health and wear
trends across various operational contexts.

(a) SV-LSTM (ours)

Fig. 4: Projection onto the first two eigenvectors from the Principal Component
Analysis (PCA) applied to the state vector for the SV-LSTM model. The SV-
LSTM model produces a straightforward structure where the position in the latent
space correlates directly with the average Exhaust Gas Temperature (EGT),
serving as a reliable representation of engine wear. This distinction underscores
the SV-LSTM model’s capability to facilitate meaningful insights into engine
health and wear patterns.



Our model provides a clear and interpretable understanding of wear through its
structured latent space, in contrast to the model in [7], which exhibits significantly
more chaotic behavior. An initial analysis can be performed independently of
specific wear types by examining the engine’s position within the latent space.
This positioning serves as an indicator of the wear level, particularly in terms
of Exhaust Gas Temperature (EGT) performance or other target parameters,
offering valuable insights into the engine’s health and operational efficiency.

5 Conclusion

In this paper, we present a model that constructs a latent space aligned with
the wear of complex dynamic systems, achieved without relying on explicit wear
data. Instead, the model is trained exclusively by minimizing the prediction error
of the observable system parameters. This innovation enables wear forecasting
for complex dynamic systems, such as aircraft engines or even living organisms,
serving as both a risk prevention tool and a method for quantifying and comparing
the effects of repairs on aircraft engines. Furthermore, future experiments
could explore the validity of the LSTM component in comparison to alternative
architectures, such as transformers or ODE networks, to assess their suitability
and potential advantages for this application.
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