
Growth strategies for arbitrary DAG neural
architectures

Stella Douka, Manon Verbockhaven, Théo Rudkiewicz, Stéphane Rivaud,
François P. Landes, Sylvain Chevallier, Guillaume Charpiat

Inria TAU team, LISN, Université Paris-Saclay, Orsay, France

Abstract. Deep learning has shown impressive results, obtained at the
cost of training huge neural networks. However, the larger the architecture,
the higher the computational, financial, and environmental costs during
training and inference. We aim at reducing both training and inference du-
rations. We focus on Neural Architecture Growth, which can increase the
size of a small model when needed, directly during training using informa-
tion from the backpropagation. We expand existing work and freely grow
neural networks in the form of any Directed Acyclic Graph. We design
strategies that reduce excessive computations and steer network growth
toward more parameter-efficient architectures.

1 Introduction

Method GPU days kWh
Firefly 1.5 9
NORTH 0.4 2.4
ENAS 0.45 2.7
DARTS 1.5 9

Table 1: GPU power consump-
tion estimation on CIFAR-10,
assuming 250W power draw.

A common practice to train a deep architec-
ture on a novel problem is to rely on over-
parametrization – meaning overly wide and
deep networks – as it facilitates optimization
and yields better results. While it is possi-
ble to start with small models that are faster
to train, they often lack expressivity and bear
optimization issues. Hence, most literature fo-
cuses on training large neural networks and
then using pruning, distillation, or compression to reduce energy consumption
in the inference phase. This includes training the large models and fine-tuning
them, requiring a tremendous amount of computational power and training time.
On the contrary, Neural Architecture Search methods (NAS) usually train mul-
tiple architectures from a finite set and choose the one that performs the best,
usually with a trade-off between accuracy and cost. This is extremely resource-
consuming and even Differential Architecture Search requires 1.5 GPU days to
train on CIFAR-10 [5] (see Table 1). This is where Neural Architecture Growth
comes at hand. The idea is to start with the simplest possible neural network
and grow it by adding neurons in existing layers or adding entirely new layers,
according to the information brought by the backpropagation. Such information
can indeed be used to go beyond the usual limitations in small network training,
to tackle potential optimization and expressivity issues. The GradMax approach
[2], requires initializing all new input weights to zero, thus preserving the func-
tion’s output. In NORTH [6], one measures the redundancy of the network as



the orthogonality between post-activations. In Firefly [8], there is a choice be-
tween splitting existing neurons or creating new ones, which also includes adding
new layers. All changes are kept local and one decides where to grow by solving
the steepest-descent optimization problem. In the approach of [7], some of us
introduce the notion of expressivity bottleneck to solve optimization issues in a
sequential architecture by increasing its layers’ width during training. We refer
to [1] for a more thorough review of methods that help improve energy efficiency.

In this paper, we extend the work of [7] by adding new layers on the fly, thus
being able, for the first time, to grow neural networks in the form of any Directed
Acyclic Graph. We test different strategies to grow the network efficiently and
reduce energy costs.

2 Methodology

expressivity
bottleneck

TA
fθ v∗ = ProjTA

(v∇)

FA

v∇

Fig. 1: Expressivity Bottleneck

Expressivity bottleneck. In Figure 1 we
present the concept of expressivity bottleneck
[7]. We define the manifold FA := {fθ | θ ∈
ΘA} as the functional space parameterized
by a neural network, that is, the set of all
possible functions one can represent by in-
stantiating parameters of a fixed architecture
A. The tangent space at fθ, namely TA :={

∂fθ
∂θ δθ | s.t. δθ ∈ ΘA

}
, consists of all the possible functions one can reach

on the current manifold FA using small parameter updates, e.g. by gradi-
ent descent. Now, let us denote by v∇ the desired update for the function
fθ when we are not constrained by the current architecture: v∇(x) :=
−∇fθ(x)L(fθ(x), y(x)) := −∇aL(a, y(x))

∣∣
a=fθ(x)

. This is the functional gra-

dient, i.e. the gradient of the loss w.r.t. the output of the network. The best
update we can perform with the current architecture A is the projection v∗ of
that desired update onto the tangent space TA. As a result, the residual that
should be completed by extending the network is: v⊥ := v∇ − v∗, where

v∗ := ProjTA
(v∇) := argminv∈TA

E(x,y)∼P

[
∥v∇(x)− v(x)∥2F

]
and the resid-

ual’s norm Ψ := ∥v⊥∥ is named the expressivity bottleneck of the architecture.
One can add more neurons to a hidden state to mitigate the expressivity

bottleneck at a given layer, thus growing the network. For further details, we
refer the reader to the original paper.

Growing an arbitrary DAG. The contribution of this paper consists in the
extension of the work by [7] to non-sequential networks, in the form of any
Directed Acyclic Graph (DAG) of fully connected layers. The graph in Figure 2
shows an example of a non-sequential network where every edge represents a fully
connected layer and each node represents a hidden state (or addition thereof).
We optimize the new weights α, ω so as to decrease the expressivity bottleneck:



1

B1

2

B2

3

B3

1

hidden
state i

hidden
state i − 1

hidden
state i + 1

A
x

α ω

W2

W3

Fig. 2: Example of DAG Network.
We assume a new node added in
color red with new weights α and
ω. We define pre-activities as A and
post-activities as B or x.

α∗, ω∗ = argminα, ω ∥ω σ(α · x) − v⊥∥.
With the current setting, we can create
a network starting from an empty graph,
rather than needing to choose a starting
point. At each growth step, we have the
option to add a direct edge (1 layer), add a
new node (with 2 edges, i.e. 2 new layers),
or increase the size of an existing node by
adding new neurons to its input and out-
put layers (increase width). Expanding a
node or adding a new one is the same pro-
cess, as we only need to specify the input
and output edges of the new neurons to
be added. The peculiarity of this case lies
in the fact that the best possible updates
v∗(x) of a specific node should take into account at least all the parameters
contributing directly to this node. For reference, in Figure 2, when calculating
v∗(x) at the hidden state i+1, we consider the pre-existing weights W2 and W3.

We split our training dataset into 3 equal parts named train-opt , train-ls
and train-gr . At each growth step, we consider all possible network expan-
sions. For every possibility we optimize the new candidate neurons’ weights
using train-opt . Then, for each new possible direction, we correct its amplitude
by minimizing the loss on train-ls. Finally, we keep only the best possible ex-
pansion, according to an estimate of the loss on train-gr , and discard all the
others. We then train this newly expanded architecture with SGD, using the
concatenation of train-opt and train-ls, which we refer to as inter-train .

Strategies for Growth. The whole search space described above is a
greedy strategy, where we let the network grow freely based on the train-gr loss
alone. The search space inflates very fast with the growth steps, together with
the associated GPU energy consumption. The bottleneck restricted space
strategy attempts to reduce this space by restricting the available network ex-
pansions. In this strategy, we find the node with maximum expressivity bot-
tleneck A∗ = argmaxA ΨA and evaluate only the expansions that contribute
to this pre-activity, that is, expanding or adding new layers that output to A∗

or expanding the node A∗ itself. This way we greatly reduce the search space
and thus the search time and GPU energy consumption. In a third strategy,
we aim at a trade-off between performance and complexity, within the bottle-
neck restricted search space. We use the Bayesian Information Criterion as
BIC = k log(n) − 2 log(L), where k is the number of parameters and n is the
sample size. This strategy is named BIC + restricted space . To compare
these strategies, we consider an ideal situation where we already know the per-
fect architecture for the task, that is a Teacher’s architecture, thought of as an
oracle.



0 2000 4000 6000 8000 10000

epochs

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

ac
cu

ra
cy

0.93

0.94

0.95

0.96

0.97

0.98

0.2

0.4

0.6

0.8

1.0

1.2

nu
m

be
r 

of
 p

ar
am

et
er

s 
10

5

1e5

inter-train

train-gr

test

parameters

Fig. 3: Neural
Architecture
Growth results
on MNIST
using arbitrary
DAG networks.
We grow the ar-
chitecture every
500 epochs.

3 Experiments and Results

104 105 106

number of parameters

88

90

92

94

96

98

te
st

 a
cc

ur
ac

y

DAG growth

NORTH-pre median

NORTH-select

2-layer NN, 300 HU

2-layer NN, 300 HU, distortions

2-layer NN, 1000 HU

2-layer NN, 1000 HU, distortions

3-layer NN, 300+100 HU

Fig. 4: Baselines on MNIST for
test accuracy and number of pa-
rameters.

Proof of concept. In [7], we evaluated
growing networks on CIFAR-100 with sequen-
tial architectures. This study considers fur-
ther experiments with DAG networks. As we
have implemented only fully-connected layers
so far, we are conducting a first evaluation on
MNIST. To the best of our knowledge, there
are no published results of NAS methods on
MNIST except for [6]. For this reason, we use
the results of [4] with fully-connected layers as
our baselines. We use the whole search space
strategy and at each growth step, we increase
the size of the architecture by 10 neurons. We perform intermediate training
between growth steps for 500 epochs and evaluate on the test set. We notice
in Figure 3 that this intermediate training pushes parameters towards overfit-
ting, but immediately after the architecture grows, the overfit gap between the
inter-train and train-gr sets is reduced and the network finds itself in a more
advantageous position, so it can continue learning. In general, by growing we
manage to escape potential local minima that force the training accuracy to
converge and we gain significantly more accuracy on train-gr. The test accu-
racy sits just below, since we also overfit on train-gr after a few steps, as it is
used for the expansion selection. Nevertheless, the gain in test performance is
slow but significant. The experiment was run for 20 growth steps, requiring a
little less than 7 GPU hours (0.29 GPU days). The final architecture achieves
an inter-train accuracy of 99.7% and a test accuracy of 96.2%. We could keep
growing the architecture for more steps but the improvement in accuracy is not
significant and the drain on power consumption and additional complexity are
not worth the added efficiency. In Figure 4 we see that we do not achieve state-
of-the-art test accuracy but our method is extremely competitive in terms of
model complexity and is thus cost-efficient. We expect that strategies such as
those presented in the next section may further improve this trade-off.



0 100 200 300 400 500 600
epochs

10 2

2 × 10 2

3 × 10 2

4 × 10 2

lo
ss

whole space search
bottleneck restricted space
BIC + restricted space

inter-train
test

0 1 2 3 4 5 6
growth step

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

cu
m

ul
ati

ve
 g

pu
 en

er
gy

 co
ns

um
pt

io
n 

(W
h) oracle

whole search space
bottleneck restricted space
BIC + restricted space

total
search phase
train phase

Fig. 5: (a) Teacher-Student loss performance. The highlighted area represents
the standard deviation over 6 runs. (b) Teacher-Student cumulative GPU en-
ergy consumption in Wh. Oracle: cost to train an architecture identical to the
Teacher for the same number of epochs. The highlighted area represents the
85% IQR over 6 runs.

Growth Strategies. To compare strategies in a general framework, we con-
struct a Teacher-Student experiment. We randomly initialize a Teacher network
for a regression task, with an input size of 20, two hidden states of size 50, a
direct connection from the input to the second hidden state, and selu activa-
tions, for a total of 4701 parameters. We can then generate input samples from
a uniform distribution and ask this Teacher for labels, to create our train and
test datasets. Predicting this output is non-trivial as the intrinsic dimension is
the same as the embedding dimension. Indeed, the random initialization of the
Teacher parameters and the independent sampling of the input features create
many degrees of freedom. We want to compare how our three strategies per-
form at growing a Student with arbitrary DAG, from scratch, to imitate the
Teacher. At each growth step, we can add 10 neurons and we perform interme-
diate training for 100 epochs. The experiments are shown in Figure 5. We notice
a temporary slight drop in performance when we restrict the search space, but
it is not a significant one and it disappears after a certain number of epochs.
However, GPU energy consumption is decreased by 23% when restricting the
search space, for the same loss. We note also that with this strategy, we only
consume 70% more energy than the oracle (the ideal scenario where the original
Teacher architecture is known and trained from scratch), while here we also have
to find the architecture.

Based on these results we estimate that with a grid-search NAS technique
instead, we would need to train 7 different architectural structures for 100 epochs
to roughly evaluate all the possible DAGs we can achieve for a network of 5
layers. Assuming they would all have the same number of neurons, chosen
among a grid of 5, we would have to train and test at least 35 architectures,
plus the best architecture fully once, for a total of ≈ 51 Wh. We achieve a more
granular result with only 25% of the energy when restricting the search space. In
retrospect, reducing the search space based on the bottleneck seems to perform
very well in terms of efficiency and cost.

The use of BIC reduces the size of the resulting architecture, with an aver-



age of 723 parameters compared to 1479 for the bottleneck restricted space and
1454 for the whole search space, but consumes more energy during the search
phase than just reducing the space, although with a smaller variance. This is
because it tends to choose architectures that create more options for the next
search phases. Studying variations on BIC, that may be able to achieve a better
performance/architectural complexity trade-off, is left for future work.

4 Conclusion and Future work

In this work, we grow neural architectures in the form of any DAG by adding new
layers and direct connections on the fly during training. Our work is based on
[7], which introduced the notion of expressivity bottleneck to increase the width
of existing layers in a pre-defined architecture structure. Our contribution is
to create arbitrary non-sequential fully connected architectures starting from
an empty graph, without any predefined structure. We show that our method
is competitive in terms of the number of parameters, thus reducing inference
time. We compare various strategies to grow an architecture and achieve lower
complexity. We manage to reduce the overall training time and thus the GPU
energy consumption compared to a grid search among architectures. The next
line of research is to further improve our strategy to fulfill an efficient trade-off
between performance and complexity. We intend to further extend our work to
introduce growable modules for convolutional layers and address scalability.

Acknowledgments This work was supported by grants ANR-22-CE33-0015-
01 and ANR-17-CONV-0003 operated by LISN to S.Chevallier and by ANR-20-
CE23-0025 operated by Inria to G.Charpiat. The European Union also funded
this work under GA no.101135782 (MANOLO project). The development, ex-
periments, and research tools used in this paper consumed roughly 42.5kWh [3],
equivalent to 2.18kg of CO2eq in France or flying 105 miles in economy class.

References
[1] Boumendil, A., Bechkit, W., and Benatchba, K. On-device deep learning: survey on techniques

improving energy efficiency of dnns. IEEE Transac. Neural Nets. and Learning Systems (2024).

[2] Evci, U., van Merrienboer, B., Unterthiner, T., Pedregosa, F., and Vladymyrov, M. Gradmax:
Growing neural networks using gradient information. In ICLR (2022).

[3] Lannelongue, L., Grealey, J., and Inouye, M. Green algorithms: Quantifying the carbon
footprint of computation. Advanced Science 8, 12 (2021), 2100707.

[4] Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-based learning applied to docu-
ment recognition. Proceedings of the IEEE 86, 11 (1998), 2278–2324.

[5] Liu, H., Simonyan, K., and Yang, Y. DARTS: Differentiable architecture search. In ICLR (2019).

[6] Maile, K., Rachelson, E., Luga, H., and Wilson, D. G. When, where, and how to add new
neurons to ANNs. In First Conference on Automated Machine Learning (Main Track) (2022).

[7] Verbockhaven, M., Rudkiewicz, T., Chevallier, S., and Charpiat, G. Growing tiny networks:
Spotting expressivity bottlenecks and fixing them optimally. TMLR (2024).

[8] Wu, L., Liu, B., Stone, P., and Liu, Q. Firefly neural architecture descent: a general approach
for growing neural networks. In NeurIPS (2020).


