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Abstract. Effective decision-making is a key challenge in artificial intel-
ligence, with Reinforcement Learning (RL) emerging as one of the main
approaches. However, RL often depends on complex reward functions,
which are difficult to design. Intrinsic motivation, inspired by psychologi-
cal concepts like curiosity, offers an alternative by generating agent-driven
rewards to foster exploration. This paper introduces intrinsic motivation
into the Elastic Decision Transformer (EDT) framework for Offline RL.
By using an auxiliary intrinsic loss, we enhance representation learning
without altering fixed reward signals. Experiments in locomotion tasks
demonstrate improved performance, underscoring the potential of intrin-
sic motivation to advance RL in offline settings.

1 Introduction

Decision-making in dynamic and uncertain environments is a key challenge in ar-
tificial intelligence, with applications spanning robotics, healthcare, autonomous
systems, and beyond. Reinforcement Learning (RL) has emerged as a powerful
approach to train agents to interact with environments and learn through ex-
perience [1]. However, much of RL’s success relies on carefully designed dense
reward functions, whose creation poses significant engineering challenges. An
alternative approach augments sparse extrinsic rewards with dense intrinsic re-
wards generated by the agent itself. Intrinsic rewards, inspired by concepts such
as intrinsic motivation [2] and curiosity [3], encourage exploration and learn-
ing for their own sake. This paradigm has enabled RL agents to discover novel
states, acquire diverse skills, and adapt to complex environments lacking suffi-
cient external feedback. By incorporating intrinsic rewards through modules like
Intrinsic Curiosity Module (ICM) [4] and Random Network Distillation (RND)
[5], RL has achieved human-level performance in exploration-intensive tasks such
as complex games and robotic manipulation.

This paper investigates the integration of intrinsic motivation into Elastic
Decision Transformers (EDTs) [6], a recent RL innovation that leverages Trans-
former [7] architectures to enhance decision-making. EDTs excel in Offline RL
[8], which uses pre-collected data for training, proving effective in scenarios where
real-time interactions are costly or limited. Their transformer-based design cap-
tures long-range dependencies in sequential data, achieving notable results in
benchmarks like D4RL [9] and Atari Games [10]. While intrinsic motivation is



widely applied in Online RL to drive exploration by modifying the reward signal,
Offline RL poses unique challenges. With learning confined to a fixed dataset
collected by a behaviour policy, directly adding intrinsic rewards may disrupt
the training process. EDTs, which model policies based on observed trajecto-
ries, inherently avoid altering fixed reward signals. To address this, we propose
an auxiliary intrinsic loss function integrated within the EDT framework. This
loss function, independent of the fixed reward signals, enhances representation
learning by promoting the capture of intrinsic properties such as state novelty
or predictive discrepancies. Optimizing this auxiliary loss alongside the pri-
mary task enables more robust and generalized policies, improving performance
without additional exploration data. Experiments on locomotion tasks demon-
strate that this approach enhances performance compared to the standard EDT
architecture, underscoring the potential of intrinsic motivation in transformer
architecture and offline RL.

1.1 Biological Plausibility and Motivation

Elastic Decision Transformers (EDTs) excel at trajectory stitching, selecting
promising segments from past experiences and dynamically adjusting the his-
tory length considered for decision-making. This allows EDTs to learn effec-
tively from both positive and negative experiences, treating errors as valuable
signals alongside rewards. Building on this principle, our approach aims to en-
hance biological plausibility by redefining errors (i.e. loss) as intrinsic rewards,
not merely as state feedback but as experiences shaped by the agent’s learn-
ing process. By integrating this heuristic perspective into the EDT framework,
we align the learning process more closely with natural strategies, emphasizing
the informative role of failures in developing robust policies. In this paper, we
introduce an auxiliary intrinsic loss mechanism into the elastic decision trans-
former framework to enhance policy learning in offline RL. We propose two EDT
variants, which integrate intrinsic motivation by leveraging RND to improve rep-
resentation learning. Our approach demonstrates how intrinsic motivation can
be effectively incorporated into transformer-based architectures, paving the way
for better generalization and biologically plausible RL models.

2 Background

In this section, we outline the theoretical background that underlies our work
and provides an essential context for the study.

2.1 Elastic Decision Transformer

This study examines a decision-making agent within the framework of Markov
Decision Processes (MDPs). The agent interacts with the environment in dis-
crete steps: it observes the state ot, selects an action at, and receives a corre-
sponding reward rt. The goal is to learn an optimal policy distribution P ∗

θ (at |
o≤t, a<t, r<t) that maximizes the cumulative reward Rt =

∑
k>t rk over time,



based on the agent’s interactions with the environment. Elastic decision trans-
formers [6] are designed to address the challenges of offline reinforcement learning
[8], where agents are trained, without real-time interaction with the environ-
ment, on fixed datasets D = {(ot, at, rt, ot+1)} collected by a behaviour policy
πb(at | ot). In offline RL, the static nature of datasets introduces issues such as
distributional shift, requiring robust methods to generalize effectively from lim-
ited data. EDTs overcome the limitation seen in Decision Transformers (DT)
[11] by leveraging the sequential modelling capabilities of transformer architec-
tures to process trajectories as sequences τ = {(ot, at, rt)}Tt=1, capturing long-
range dependencies between states, actions, and rewards. This enables EDTs
to perform trajectory stitching, combining suboptimal trajectory segments into
coherent policies, making them particularly effective for offline RL tasks. Their
flexibility and performance in domains like D4RL benchmarks highlight their
utility in reinforcement learning applications.

2.2 Curiosity-Driven Learning

Curiosity-driven learning introduces intrinsic motivation as a mechanism for
driving agent behavior independently of externally defined rewards. In this
paradigm, the agent generates intrinsic rewards rintt based on measures such as
state novelty, prediction error, or uncertainty, which are formalized as rintt =
f(ot, at), where f is an intrinsic reward function [4]. This encourages explo-
ration and the discovery of diverse skills, even in environments with sparse or
no external rewards. It draws inspiration from developmental psychology, where
curiosity fosters learning and adaptation in humans. In reinforcement learning,
curiosity has been applied successfully to tackle sparse-reward environments and
improve policy robustness in complex tasks [12]. In this work, we adapt these
principles to Offline RL by introducing an auxiliary intrinsic loss Lint, which en-
hances the agent’s representation learning. Unlike in online RL, where intrinsic
rewards directly influence agent actions, our approach incorporates Lint to guide
the learning process without modifying the fixed reward signals in the dataset.

3 Methods

In this section, we describe the methodological framework developed to inte-
grate intrinsic motivation into the EDT for offline reinforcement learning. Our
approach is motivated by the need to enhance representation learning and policy
robustness without altering the fixed reward signals inherent to offline datasets.
We achieve this by introducing an auxiliary intrinsic loss Lint that complements
the primary learning objective of EDTs, encouraging the agent to learn richer
representations by leveraging intrinsic motivation signals.

3.1 Intrinsic Auxiliary Loss

We adapt the principles of curiosity-driven learning to the offline RL paradigm by
introducing an intrinsic loss Lint to complement the EDT standard loss. Inspired



Fig. 1: Figure representing the proposed architecture with the two EDT variants. We high-
light the blocks subject to backpropagation in each of the two variants. The target network of
the RND has its weights frozen and is never updated, as shown in [5].

by the random network distillation module proposed in [5], which computes
novelty using the next state as input, we extend this concept to two EDT-based
variants (see Fig. 1). In the first variant, EDT-SIL (State Intrinsic Loss), the
RND module operates on the embedded state, encouraging the agent to explore
under-represented areas of the state space. In the second variant, EDT-TIL
(Transformer Intrinsic Loss), we modify the classic EDT architecture to use the
transformer’s output as input to the RND module, aligning novelty computation
with the model internal representation. For both variants, we use the outputs
of the target and predictor networks, internal to the RND module, to calculate
Lint as the mean squared error between the features of the two networks. Then,
without scaling factors, we sum the Lint to the standard EDT loss LEDT. We
embed the RND module directly within the EDT architecture. By doing so,
the intrinsic loss Lint not only updates the weights of the RND module but also
those of the preceding components: the embedder in the EDT-SIL case, and
the embedder and transformer in the EDT-TIL case. This mechanism allows
us to seamlessly integrate the concept of intrinsic motivation into the offline RL
paradigm, fostering richer representation learning and encouraging exploration-
driven strategies, even in the absence of environmental interaction.

4 Experiments

The application of the two proposed variants of EDT to benchmark scenarios is
presented in this section. We compare the performance of our variants with the
performance of the standard EDT



4.1 Dataset and metrics

We evaluated our approach on locomotion tasks from MuJoCo environments
(D4RL benchmark [9]), using medium-replay datasets for Hopper, Walker2d,
HalfCheetah, and Ant. These datasets, collected during the training of a be-
havior policy transitioning from suboptimal to near-optimal performance, of-
fer a broader and noisier data distribution, making learning more challenging
than standard medium datasets. We conducted experiments using the architec-
ture outlined by Wu et al. [6]. Performance was evaluated following the scor-
ing methodology specified in the same work, utilizing human-normalized scores
(HNS) [13]. Specifically, HNS is calculated as HNS = score−score random

score human−score random ,
ensuring a consistent scale across games.

4.2 Results

In our experiments, we trained both the basic EDT and our EDT variants using
five seeds for each training environment. For each environment, we then tested
all five trained models for three evaluation rounds of 100 episodes each so as to
ensure robustness in the results. The results of our experimentation are shown
in Table 1. The mean and standard deviation of the HNS scores (4.1) obtained
during the evaluation phase are reported for each environment.

Model Hopper Walker Cheetah Ant
EDT 81.56±9.96 62.25±5.21 37.32±2.46 85.51±5.06

EDT-SIL 84.67±4.80 57.21±8.54 37.64±2.44 84.02±3.72
EDT-TIL 81.72±9.27 65.06±3.81 38.60±1.28 83.72±4.13

Table 1: Mean and standard deviation of human-normalized scores (HNS) for EDT and its
variants (EDT-SIL, EDT-TIL) across four tasks. Best results per task are highlighted.

From the results we can appreciate that, in all environments except Ant,
using the intrinsic loss mechanism leads to better results. In particular, using
the EDT-SIL model results in a strong increase in performance, but only in
the first test environment. On the other hand, with the EDT-TIL model we
get a performance increase in all the first three environments. Note that the
evaluation phase occurs in real time, using new interactions with the environment
rather than relying on the fixed training dataset. This justifies the addition of
intrinsic loss, as it encourages exploration-like behaviour, improving the model’s
capacity to generalize during evaluation. Inspired by biological learning, where
curiosity adapts to new stimuli, our intrinsic loss enables dynamic refinement of
representations, bridging the gap between offline training and real-time decision-
making.

5 Conclusions

This study introduces intrinsic motivation into the Elastic Decision Transformer
(EDT) framework, demonstrating its potential to enhance performance in offline



reinforcement learning tasks. By integrating an auxiliary intrinsic loss func-
tion, we bridge the gap between agent-driven exploration strategies and the
constraints of fixed reward signals in offline settings. Experimental results from
locomotion tasks in benchmark datasets highlight the efficacy of this approach,
showcasing improvements in policy learning. Although this is preliminary re-
search, it lays a promising foundation for future in-depth investigations into the
use of intrinsic motivation within transformer architectures and the offline RL
paradigm. Future research should investigate the impact of the auxiliary in-
trinsic loss on model learning dynamics and its applicability to other domains.
Expanding the benchmark in this way would enable a more comprehensive sta-
tistical analysis of the differences between the tested models. Exploring this
direction further could unlock more robust and adaptive methods for generaliz-
ing in complex environments. Moreover, integrating biological plausibility into
these models may provide insights into natural learning mechanisms, enabling
the design of RL frameworks that align closely with cognitive principles. This
work not only emphasizes the value of intrinsic motivation in offline settings
but also offers a biologically inspired pathway to bridge the gap between static
training datasets and dynamic real-world evaluation scenarios.
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