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Abstract. We propose cognitive prompting as a novel approach to
guide problem-solving in large language models (LLMs) through struc-
tured, human-like cognitive operations, such as goal clarification, decom-
position, filtering, abstraction, and pattern recognition. By employing
systematic, step-by-step reasoning, cognitive prompting enables LLMs to
tackle complex, multi-step tasks more efficiently. We introduce three vari-
ants: a deterministic sequence of cognitive operations, a self-adaptive
variant in which the LLM dynamically selects the sequence of cognitive
operations, and a hybrid variant that uses generated correct solutions as
few-shot chain-of-thought prompts. Experiments with LLaMA, Gemma 2,
and Qwen models in each two sizes on the arithmetic reasoning benchmark
GSM8K demonstrate that cognitive prompting significantly improves per-
formance compared to standard question answering.

1 Introduction

Recent advancements in AI, particularly in LLMs, have significantly improved
tasks such as text summarization, code generation, and question answering.
However, LLMs still face challenges with multi-step reasoning compared to hu-
man cognition.

This paper introduces cognitive prompting (CP), a method designed to en-
hance LLM problem-solving by emulating human cognitive operations (COPs)
through structured steps such as goal clarification, decomposition, and pattern
recognition, see Figure 1. Inspired by cognitive psychology, CP aims to bridge
the gap between human reasoning and AI, improving performance in domains
such as mathematics, logic, and decision-making. Our experiments with LLaMA,
Gemma 2, and Qwen models, each in two different sizes, on the GSM8K dataset
[2], demonstrate significant performance gains, particularly with the hybrid of
self-adaptive and few-shot chain-of-thought (CoT) variant.

The structure of the paper is as follows: Section 2 reviews related work;
Section 3 introduces the concept of CP; Section 4 describes three CP variants;
Section 5 presents experimental results on the impact of CP on arithmetic rea-
soning tasks; and Section 6 concludes the paper.
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2 Related Work

Zero-shot prompting generates responses without providing specific examples,
while few-shot prompting [1] improves performance by including task-specific
examples. CoT prompting [4] further enhances reasoning by breaking complex
problems into sequential steps, enabling the model to process each stage inde-
pendently. Tree of Thoughts (ToT) prompting [6] expands this approach by
exploring multiple reasoning paths simultaneously, making it well-suited for in-
tricate decision-making scenarios. ReAct [7] integrates logical reasoning with
real-time decision-making, offering enhanced adaptability in dynamic and inter-
active environments. Prompt Breeder [3] employs evolutionary computation to
iteratively optimize prompts for improved results. Automated Prompt Engi-
neering (APE) [8] and Optimization by PROmpting (OPRO) [5] take prompt-
ing refinement further by automating the design process. These methods often
outperform manually crafted prompts by leveraging optimization algorithms to
fine-tune instructions for optimal model performance.

3 Cognitive Prompting

CP structures problem-solving into a sequence of COPs, enabling LLMs to
address complex tasks across domains like mathematics, logic, and decision-
making. Drawing from cognitive psychology, CP breaks problems into stages
that mimic human task refinement, enhancing clarity, interpretability, and adapt-
ability. Unlike methods such as CoT [4], CP provides multi-dimensional depth
without manual solution design.

Instructions: 
Solve the following problem by choosing and applying appropriate 
cognitive operations from the list below. For each step, provide your 
concise reasoning before moving on.

Instructions:
Solve the following arithmetic problem by following each step of 
the cognitive operations listed below. For each step, provide your 
reasoning and calculations before moving on to the next step.

General Cognitive Prompting Arithmetic Cognitive Prompting

Cognitive Operations:
1. Goal Clarification: Define the objective clearly.
2. Decomposition: Break down the problem into manageable parts.
3. Filtering: Focus on the most relevant information.
4. Reorganization: Arrange the information to reveal structure
5. Pattern Recognition: Identify recurring patterns or relationships.
6. Abstraction: Extract fundamental principles from the patterns.
7. Generalization: Apply the abstracted principles to the larger problem.
8. Integration: Synthesize the components into a cohesive solution.

Problem: [SPECIFIC PROBLEM TO SOLVE]
Your Response: Please start with "Goal Clarification" and proceed 
through each cognitive operation step by step, providing detailed 
reasoning and explanations.

Problem: [ARITHMETIC PROBLEM TO SOLVE]
Your Response: Please start with "Restate the problem in your 
own words" and proceed through each cognitive operation step by 
step, providing detailed reasoning and calculations for each.

Cognitive Operations:
1. Goal Clarification: Restate the problem in your own words.
2. Decomposition: List the given information.
3. Filtering: Identify what you need to find.
4. Reorganization: Assign variables to the unknowns.
5. Pattern Recognition: define each variable clearly.
6. Abstraction: Set up equations based on the problem.
7. Generalization: Solve the equations step by step.
8. Integration: Verify your solution with the given information.

Fig. 1: Left: General CP, Right: CP adapted to arithmetical reasoning.

CP can be formalized as an optimization problem. Given a set of COPs
C = {c1, c2, . . . , cn} and a sequence S = {s1, s2, . . . , sk} of k operations from C,
the goal is to design S∗ that maximizes task performance S∗ = argmaxS⊆C f(S)
subject to constraints like |S| = k, s1 = goal clarification, and sk = integration.
Here, f(S) measures performance (e.g., accuracy or coherence).



This paper focuses on eight key COPs.

1. Goal Clarification. This operation aligns the model’s reasoning with the desired
outcome and minimizes distractions. All subsequent operations are guided by
this goal.

2. Decomposition: Break the problem P into smaller sub-problems, P1, P2, . . . , Pn.
This incremental approach is particularly useful for complex, multi-step prob-
lems, such as mathematical proofs or logical reasoning. Decomposition isolates
critical components for systematic problem-solving.

3. Filtering: Select the most relevant information from the problem set, Irel ⊆ I.
Filtering ensures the model concentrates on key details, excluding irrelevant
data. By narrowing its focus, the model achieves greater accuracy and efficiency
in problem-solving.

4. Reorganization: Rearrange data or variables to reveal patterns or simplify the
problem structure. Reorganization helps the model uncover underlying relation-
ships, making complex data more interpretable, and is particularly effective for
algebraic manipulation or logical structuring.

5. Pattern Recognition: Identify recurring patterns or relationships, P, that con-
nect the problem to known solutions. Recognizing patterns accelerates problem-
solving by allowing the model to apply established strategies. This enhances
predictive accuracy and facilitates generalization.

6. Abstraction: Extract broader principles from the identified patterns, P, for appli-
cation across different problems. Abstraction helps the model transcend specific
details and focus on core concepts, enabling flexible problem-solving.

7. Generalization: Apply the abstracted principles to solve broader problems or
similar contexts. Generalization ensures that solutions are scalable and adapt-
able to related tasks, enhancing the model’s reasoning robustness and versatility.

8. Integration: Synthesize the individual solutions, Qi, into a cohesive final answer,
Q, ensuring all sub-problems are resolved and producing a unified and consistent
solution.

Adapting COPs to specific domains ensures that the reasoning process remains
relevant and effective for each task. For arithmetic reasoning, the adapted COPs
are illustrated on the right in Figure 1.

4 Cognitive Prompting Variants

CP comes in three variants. Deterministic cognitive prompting (D-CP) follows a
fixed manual designed sequence of cognitive operations, providing structure but
less adaptability. We optimized the sequence of COPs in preliminary experi-
ments. Self-adaptive cognitive prompting (SA-CP) allows the model to self-select



the next COP based on the task’s needs, i.e., the LLM decides on its own, which
COP to choose next. A prompt incorporating the following command enables
self-adaptive prompting:

1 For each step , choose and apply the most suitable cognitive operation
2 from the list below and provide a concise explanation of your reasoning
3 before moving on to the next step.

This flexibility enhances problem-solving and produces more interpretable rea-
soning, but is based on the model’s own ability to structure reasoning. Hybrid
cognitive prompting (H-CP) uses a brief LLM-generated summary of successful
problem solutions previously generated with CP and adds k summaries to the
CP instruction in a hybrid CP-few-shot-CoT fashion. This variant is based on
the idea two combine structured thinking with successfully solved examples, a
problem-solving strategy we believe also human reasoning often follows.

5 Arithmetic Reasoning

Benchmark. We evaluate the performance of CP using Meta’s LLaMA 3.1 (8B
and 70B), Google’s Gemma 2 (9B and 27B), and Alibaba’s Qwen 2.5 (7B and
32B) models on the GSM8K dataset [2], a widely used benchmark for math
problem-solving. GSM8K consists of 7,000 training and 1,500 test high-quality,
grade-school math word problems, designed to assess the reasoning and mathe-
matical capabilities of LLMs. Since CP does not require training, we exclusively
evaluate performance on the test set.

Mid-Size Models. Figure 2 presents the experimental results, comparing stan-
dard zero-shot prompting with D-CP, SA-CP, and H-CP (based on the self-
adaptive CP prompt variant, k = 2) for the mid-size models, i.e., LLaMA 8B,
Gemma 9B, and Qwen 7B. CP consistently outperforms zero-shot prompting
across all variants and models, demonstrating significant improvements.
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Fig. 2: Solve rates of CP strategies using mid-size models on GSM8k (3 repeti-
tions).



Large Models. Figure 3 compares all variants across large models, including
LLaMA 70B, Gemma 27B, and Qwen 32B, highlighting consistent improve-
ments with CP. Notably, H-CP demonstrates a significant performance advan-
tage, achieving an impressive 95% solve rate on the LLaMA 70B model. While
Qwen 32B delivers excellent results even with zero-shot prompting, its perfor-
mance is further enhanced by CP, particularly with the hybrid CP variant.
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Fig. 3: Solve rates of CP strategies using large models on GSM8k (3 repetitions).

Fig. 4: SA-CP sequences, LLaMA 70B.

Figure 4 shows the most frequent
COP sequences1 that have automat-
ically been chosen by SA-CP on
LLaMA 70B. “GC DC PR” is the
most frequent sequence, indicating its
fundamental role. Shorter sequences
dominate, while longer, more complex
sequences are used less often. We
observed similar results for the other
LLMs.

6 Conclusions

CP models human reasoning as a sequence of COPs delivered through struc-
tured prompts, fostering structured thinking through general or domain-specific
COPs. Unlike example-based approaches like CoT, CP emphasizes high-level
reasoning, making it highly adaptable across diverse tasks. Our experiments
show that self-adaptive CP significantly boosts LLM performance on complex
tasks, such as GSM8K math problems, with notable improvements for mid-size
and larger models, though the proportional gain is greater for mid-size models.
Additionally, the hybrid approach combining CoT few-shot prompting and CP
delivers the best overall results across all experiments.

Our future work will focus on extending CP to additional domains and mod-
els, such as legal reasoning and strategic planning, to further validate its robust-
ness in specialized tasks.

1Goal clarification (GC), decomposition (DC), pattern recognition (PR), generalization
(GN), reorganization (RE)
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