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Abstract. Concept drift refers to the phenomenon that the underlying
data distribution changes over time. While detection methods or model ad-
justment methods exist, a proper explanation of drift in high-dimensional
settings is still widely unsolved. This problem is crucial since it enables an
understanding of the most prominent drift characteristics. In this work,
we propose to explain concept drift of high-dimensional data objects by
means of concept activation vectors which give rise to local, phase, and a
novel, global explanation called the Concept2 Drift Distribution.

1 Introduction

Most machine learning contributions assume the availability of a batch setup
where a dataset is drawn i.i.d. from the data-generating distribution. However,
in many real-world scenarios data is collected over time and possibly subject to
changes in the underlying distribution. These changes can be induced by envi-
ronmental, measurement, or societal factors. This phenomenon, called concept
drift [1], is a challenge for many machine learning systems.

Effectively addressing concept drift requires three key components: accurate
detection, comprehensive explanation, and an appropriate response strategy.
Detection methods identify when drift occurs, while explanations characterize
the nature of drift, enabling operators to respond effectively. To achieve this,
explanations must convey the characteristics of a drift, by considering feature
attributions or directly using histograms [2]. However, in high-dimensional sce-
narios, a feature-based drift explanation remains an open challenge.

One promising approach [3] addresses this by proposing a model-based expla-
nation framework that combines drift localization [4] with well-established xAI
techniques. While this approach has shown effectiveness in certain contexts, it
currently focuses on local explanations for high-dimensional data, requiring oper-
ators to examine each item in the data stream individually to understand the full
extent of the drift. This further underscores the need for a more comprehensive
set of drift explanations in high-dimensional contexts.

To address this gap, we propose a novel drift explanation pipeline based
on Concept Activation Vectors (CAVs) [5], which offers human-interpretable ex-
planations targeted at high-dimensional settings by combining a well-established
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concept extraction technique with the model-based explanation framework. Our
proposed pipeline produces drift explanations at multiple levels—local, phase,
and global—enabling a nuanced perspective. Central to our method is the novel
Concept2 Drift Distribution which provides a holistic, global view of the drift.
We demonstrate its utility and give quantitative and qualitative evidence that
it offers a comprehensive drift characterization. In this work, we focus on image
streams but are not restricted to this domain.

This paper is organized as follows: Section 2 provides background information
needed to understand our proposed pipeline. In Section 3, we provide the details
of the methodology and explanation scheme. Section 4 presents a quantitative
evaluation of the pipeline’s effectiveness and includes a case study to qualitatively
evaluate the generated explanations.

2 Background

Given a data stream S = (xt)
T
t=0, where at time t a sample xt is generated

by the probability measure pt. Concept drift occurs if ∃t0 ̸= t1 : pt0 ̸= pt1 [2]
which describes various types of drift including abrupt, gradual, and reoccurring.
We focus on a single change point, prominent in abrupt drift and inducible
with drift detectors [4, 2]. Drift localization, i.e. identifying which samples are
drifting, can be framed as a binary classification problem that predicts whether
a given sample xt appears before or after the drift [1, 4]. This formulation has
two key advantages: (1) drifting samples that occur exclusively in either phase
(before or after the drift) can be identified with high certainty, while non-drifting
samples, appearing in both, are classified with low certainty; and (2) since the
classification model captures information about the drift, state-of-the-art xAI
techniques can be applied to explain both the model and the drift [3]. However,
global explanations for high-dimensional data are not widely explored [3].

Our pipeline addresses the above limitation by building on a method, known
as CRAFT [6], which provides automatic discovery of human-interpretable con-
cepts learned by deep neural networks. The authors of CRAFT begin by em-
bedding inputs into a non-negative activation space of a pre-trained model and
utilize Non-negative Matrix Factorization (NMF) to decompose the embedded
data matrix A into a product of non-negative matrices U and V , solved by re-
constructing A, i.e. (U, V ) = argminU≥0,V≥0 ∥A−UV ⊤∥2F . The decomposition
yields: V the dictionary of concepts (or concept bank) and U a reduced represen-
tation of A according to the basis V . Furthermore, by considering the variance
fluctuations by perturbing U , they use Sobol Indices to attribute importance
scores to the concepts for a predicted class and individual inputs.

3 Methodology

In Figure 1, we illustrate our proposed pipeline which aims to characterize and
explain a drift using extracted concepts. Given a high-dimensional data stream,
x1, x2, . . . , xT and a drift detector that estimates a drift time t and thereby two



Fig. 1: Our proposed pipeline for generating concept drift explanations

sets before drift and after drift: BD = {i|i ≤ t}, AD = {i|i > t} , we arrange
our pipeline into 4 steps:
Step 1 - We represent the data in a meaningful form by embedding the stream
using a foundation model g into an activation space with the condition that for
each xi, g(xi) ≥ 0 (e.g. after a ReLU layer).
Step 2a - Next, we train the model that we are going to explain: a Drift
Localization model h trained to predict for a given g(xi) if i ∈ BD or i ∈ AD.
Step 2b - To generate the concepts, we train one NMF on patches from {g(xi)|i ∈
BD} and another NMF on patches from {g(xi)|i ∈ AD}, producing two concept
banks, VBD and VAD, each with dimension d. We then concatenate these to
obtain [VBD, VAD] = Vdrift and can represent each g(xi) as a linear combination
of the concepts in Vdrift, with scaling factors Ui.
Step 3 - To estimate the importance of the concepts in Vdrift, we follow CRAFT’s
approach and utilize the Sobol Indices [7], which measure the variance of the
classifier h predictions resulting from masking concepts.
Step 4 - Repeating Step 3 for every data point, we obtain a local importance
score el(g(xi)) ∈ R2d with 2d concepts. We augment the local score from above
with consistent phase and global explanations. The phase importances can be
computed as in literature by averaging over el(g(xi)) for points predicted in
BD and AD, respectively. We further propose a global explanation which is
computed as follows: for each concept c, we compute the relative number of
times c is the most important concept among BD points:

eBD(c) = |{xi| argmax el(g(xi)) = c, i ∈ BD}|/|{xi|i ∈ BD}|, (1)

resulting in a probability distribution eBD over the concepts. Doing the same for
points from AD, we obtain eAD. By assigning to each concept a probability of
occurring before and/or after drift, eBD and eAD highlight the relevant changes
and uniformities in the2 data stream. We display them together in a histogram
and refer to them as the Concept2 Drift Distribution.

Moreover, the global explanation enables a novel, simple model h̃, which
approximates h, to be constructed. Model h̃ utilizes the el for a given g(xi) to
find the concept c∗ such that c∗ = argmax el(g(xi)), and then assigns a label
based on the max(eBD(c

∗), eAD(c
∗)), making it intrinsically interpretable.



h h̃ Recon c∗ Recon all
D
1 Accuracy 0.815 ± 0.063 0.788 ± 0.055 0.764 ± 0.062 0.773 ± 0.071

LP Accuracy NA 0.829 ± 0.085 0.850 ± 0.073 0.889 ± 0.080

D
2 Accuracy 0.790 ± 0.075 0.772 ± 0.067 0.751 ± 0.071 0.767 ± 0.077

LP Accuracy NA 0.848 ± 0.075 0.851 ± 0.072 0.886 ± 0.075

Table 1: We report for each data stream the average accuracy in relation to the
ground truth labels (’Accuracy’) and to h’s predictions (’LP Accuracy’) over 50
runs.

4 Experimental Evaluation

In this section, we empirically evaluate the correctness and robustness of our
proposed global explanation for drift by comparing Model h̃’s performance to
Model h. We additionally justify our selection of only the single, most important
concept c∗ by investigating the information loss by reconstructing h’s input with
only c∗ and with all concepts. Following that, we present a case study of a
possible drift scenario to illustrate the generated explanations.

4.1 Compressing Drift Localization to a Single Concept

To construct the drift, we construct data streams, D1 and D2, each with 500
images. D1 is derived from food-related items in six classes contained in No
ImageNet Class Objects [8], while D2 involves various types of wolves and foxes
from ImageNet [9]. For each stream, we randomly assign each class to a phase
of drift (BD, AD, present in both), repeating 50 times. The non-drifting inputs
are randomly distributed into BD and AD. We leverage a ResNet model pre-
trained on ImageNet[9] to embed each image and train a random forest with 20
minimum leaf samples to localize the drift. Then we apply our proposed pipeline
with 10 concepts for BD and AD each (default in [6]) and use a patch size of
100 (≈ 25%), as a compromise between performance and interpretability.

To demonstrate that our global explanation characterizes the drift and closely
approximates h, we compare h and h̃’s accuracy with the ground truth and how
well h̃ matches h’s predictions, denoted as ’LP Accuracy’. We report the same
metrics by applying h on the reconstruction generated with only c∗ (’Recon c∗’)
& all concepts (’Recon all’).

The results in Table 1 show that h̃ closely matches the performance of h on
the drifts, only dropping by 2-3 points (top rows) and by matching h’s prediction
nearly 83%-85% of the time (bottom rows). ’Recon c∗’ demonstrates that by
only using the most important concept we recover 75-76% accuracy and 85% of
h’s predictions, both of which only slightly increase when all concepts are used
for reconstruction. These results show that h̃ indeed closely approximates the
model h in performance and, therein, selecting the most important local concept
c∗ is justified, since representing the data with c∗ leads to a similar performance
as h and resembles its predictions to a high degree. We further exemplify this
by including all concepts only observing slight performance boosts.



Fig. 2: Examples of the generated explanations from our proposed method in
the given case study.

4.2 Case study

We select a possible stream of 500 randomly sampled images from D2 to include
an abrupt drift. As shown in the top of Figure 2, Red Wolves & Arctic Foxes
appear exclusively before drift, White Wolves & Grey Foxes only after drift, and
some appear both before and after. Our task is to generate explanations using
the derived concepts which describe the occurred drift.

The results from the global explanations, eAD and eBD, are shown in the
center of Figure 2. Due to space constraints, we plot the top five occurring
concepts in eAD & eBD, and on the x-axis, display their probability of occurrence,
denoting by color before drift (blue) or after drift (red). We also add the patch
that most activates each derived concept on the central axis.

Using this Concept2 Drift Distribution, we can immediately spot which con-
cepts occur exclusively in either phase. Concepts 3, 5, & 1 materialize only in
the BD phase, and upon examination of the patch, they correspond to the body
of a Red Wolf and the head & fur of an Arctic Fox, respectively. Likewise in the
AD phase, concepts 13, 11, & 10 occur solely and correspond to the head of a
White Wolf, the body of a Grey Fox, and the body of a White Wolf. Using our
proposed explanation, we have found the core concepts that explain exactly the
drifting components of the stream.

In addition to identifying the drift, our global explanation also characterizes
the non-drifting components. Concepts 4 & 18 are detected in both phases and
correspond to the face of a Timber Wolf and a Red Fox. Indeed, these were the



images not affected by drift in our generation.
The explanation adds the benefit of compressing the stream of images to

concepts without losing much information, and thus, produces a feature-based
representation of the drift, and subsequently, the interpretable model h̃.

For more narrow explanations of the drift, the framework additionally pro-
vides phase (left) and local (right) explanations. The phase explanations give
insight into the concepts that contribute most to the predicted phase made by
h, while the local explanations clarify what concepts are present (bottom right)
and where the concepts are detected (top right).

5 Conclusion

We introduced a novel, comprehensive framework for explaining drift using auto-
matically extracted concept activation vectors. Our proposed framework enables
the Concept2 Drift Distribution which offers a global explanation by reducing
the stream of images to single concepts and assigning probabilities to their occur-
rence in each phase of drift. This distribution also gives rise to the interpretable
model h̃ which, as we showed, closely approximates the drift localizer h. More-
over, we also demonstrated that our proposed framework also supplies phase
and local explanations, for more specific studies into the drift. In future work,
examining the framework applied to text, a closer look at the assumptions for
the deep embedding, and explaining other relevant problems such as rejection
strategies and outlier detection using concepts seem to be promising directions.
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