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Abstract. Barlow Twins is a feature-contrastive self-supervised learn-
ing framework built on the principle of redundancy reduction. The idea
is to train a network by maximizing the correlation between correspond-
ing features and minimizing the correlation between non-corresponding
features in distorted views of the same image, through this facilitating
effective pretraining of a backbone network for a subsequent classification
head. This is achieved by diagonalizing the cross-correlation matrix of the
network’s representations and scaling it towards the identity matrix. We
show that the cross-correlation matrix of distorted images is inherently
symmetric, independent of the backbone network’s weights, which leads
to two key insights: (i) the cross-correlation matrix can always be diag-
onalized using a linear transformation (layer), and (ii) the core idea of
maximizing correlations between corresponding features while minimiz-
ing them for non-corresponding features alone is insufficient for effective
backbone network pretraining. Nevertheless, Barlow Twins provide highly
effective pretraining. We show that this is due to the normalization of the
cross-correlation matrix in the Barlow Twins cost function. This normal-
ization leads to minima of the cost function which are equivalent to the
minima of sample contrastive approaches to enforce invariance.

1 Introduction

In self-supervised learning, the goal is to learn meaningful representations with-
out relying on labels, which can be costly to obtain, especially for large datasets.
Approaches like SimCLR [1] show that self-supervised methods can produce
strong representations which achieve competitive results compared to super-
vised approaches. These approaches are often referred to as sample-contrastive
and rely on positive and negative samples. Another class of self-supervised
learning approaches is called feature-contrastive, which works by comparing
different instances at the feature level rather than the sample level. A major
example are the Barlow Twins [2], which introduced feature-contrastive learn-
ing grounded in the principle of redundancy reduction in neural representations,
initially proposed by H. Barlow [3]. The Barlow Twins approach minimizes the
distance between a modified cross-correlation matrix and the identity matrix in
order to extract representations with decorrelated feature dimensions. In [2], a
ResNet-50 f [4] is adapted by deleting the fully connected layer and applying
a projector network, which is a large multilayer perceptron (MLP) p. Figure 1
shows a schematic overview of this architecture.



Fig. 1: Diagram of Barlow Twins. A batch of images X gets augmented twice.
Each augmentation gets propagated through the same ResNet-50 f and projec-
tor network p. The resulting feature vector matrices ZA and ZB are used to
calculate C.

Propagating a batch through the network can be split up into three steps:

A = TA(X), HA = f(A), ZA = p(HA)

B = TB(X), HB = f(B), ZB = p(HB).

During the first step, the two views are generated by transforming each image
in the batch in two ways by TA and TB (e.g. color jitter, random grayscale or
solarization; for more details see [2]). Note that each image gets transformed
by a different augmentation, i.e. TA for the first image may be different than
TA for the second image. Afterwards, the two views A and B are propagated
through the same ResNet-50 f . The resulting features HA and HB are then
propagated through the projector network p to create ZA and ZB , respectively.

Now, the cross-correlation matrix for a batch of images is calculated by
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To be precise, it is not the cross-correlation matrix but the matrix of the Pearson
correlation coefficients between each pair of output neurons of the projection
network. The proposed loss function is defined as
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with the cross-correlation matrix C. LBT is minimized by the identity matrix,
i.e. diagonal components of 1 and off-diagonal components of 0. The regular-
ization parameter λ controls the influence of the off-diagonal components.

An intuitive explanation for the loss function is an invariance term for the
first sum and a redundancy reduction term for the second sum. The invariance
term produces embeddings that are ”invariant” to distortions TA, TB in the



sense that an image feature encoded by an embedding dimension shall highly
correlate in different distortions of the same image. Additionally, it avoids
the trivial solution of all features being zero. The redundancy reduction term
decorrelates different embedding dimensions (features) in order to avoid encod-
ing similar image properties in multiple dimensions. Additionally, it avoids the
trivial solution of all features being constant.

After the pretraining phase is concluded, a simple linear classification head
is trained via supervised learning. In this phase, the ResNet-50 backbone’s
parameters are frozen and not further updated, and the projector network is
discarded. The classification head is a linear layer that takes in the feature
vectors that were extracted by the backbone and assigns a class label. A different
interpretation is that the ResNet-50 backbone transforms the images into an
embedding space where, in the best case, the features are linearly seperable
such that a linear layer can easily classify the respective image.

The Barlow Twins framework has been successfully applied in different sce-
narios and been able to consistently yield results comparable to or surpassing
the state-of-the-art, all achieved with a relatively small labeled dataset. In the
following, we will demonstrate that this effectiveness of the Barlow Twins ap-
proach, in fact, is not achieved by Barlow’s redundancy principle but rather by
enforcing invariance through the normalization in equation 1. In [5] the authors
analysed the connection between sample- and feature-contrastive learning by
focussing on the non-diagonal elements of the cross-correlation matrix. Here we
focus on the role of the diagonal elements.

2 A linear projector network can diagonalize the cross-
correlation matrix

The Barlow Twins loss equation 2 is not using the precise definition of the
cross-correlation matrix, but taking a matrix with the Pearson correlation co-
efficients between pairs of output neurons of the projector network. However,
the Barlow Twins idea of redundancy reduction, i.e., maximizing the correla-
tion between corresponding features and minimizing the correlation between
non-corresponding features in distorted views of the same image, can already
be achieved with the precise definition of the cross-correlation matrix, which
gives

C̃i,j = ⟨ZA
:,i,Z

B
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without the normalization as in equation 1. Using it in equation 2 also avoids
trivial solutions like overall zero or constant values.

For determiningCi,j as well as C̃i,j , each image is augmented by TA and TB .
For each image the two augmentations TA and TB are drawn independently
from the same discrete set of possible augmentations T , hence, each pair of
possible TA and TB can occur with equal probability. During the training
process, the cross-correlation matrix is calculated only over the given batch, a
limited number of images. The underlying complete cross-correlation matrix
of the Barlow Twins is given by the cross-correlation matrix over the whole



data distribution µ(x) and all combinations of TA and TB . With zA(x) =
p(f(TA(x))) and zB(x) = p(f(TB(x))) as the output vectors of the projection
network for a given x from the data distribution µ(x), the complete cross-
correlation matrix 3 is given by

C̃i,j =

∫ ∑
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i (x)z

B
j (x) dµ(x). (4)

If we take a linear projector network p, it can be decribed by a matrixW and we
obtain zA(x) = W f(TA(x)) and zB(x) = W f(TB(x)) with f as the output
vector of the backbone network. It is easy to see that
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With equation 6, the matrix S is not only symmetric, but also positive semi-
definite with non-negative eigenvalues. It is well known from linear algebra that
for a symmetric, positive definite matrix S there is always a W in equation 5
that leads to a diagonal C̃ with non-negative diagonal elements. As long as there
are no zero diagonal elements (zero eigenvalues), a subsequent linear scaling
(whitening) operation leads to C̃ = I with I as the identity matrix which
perfectly minimizes the Barlow Twins loss 2. It suffices that the backbone
f simply adapts such that the y(x) span the whole space to ensure non-zero
eigenvalues which leads to perfect solutions for the Barlow Twins loss.

The requirement of non-zero eigenvalues (diagonal elements) is crucial to
avoid degenerate solutions such as constant or zero outputs from the backbone.
However, this condition alone is insufficient to obtain good solutions, as even
random backbone weights can span the entire space and allows even a linear
projector head to minimize the Barlow Twins loss perfectly. An MLP projector
is far more expressive than a linear layer and can also diagonalize the outputs



of random backbones. As a result, using the Barlow Twins loss without nor-
malization of the cross-correlation matrix lacks the necessary formative power
for effective backbone pretraining. We now demonstrate how normalization of
the cross-correlation matrix changes this dynamic.

3 Feature normalization is crucial

The cross-correlation matrix 1 used in the Barlow Twins framework goes beyond
simply measuring correlation and decorrelation of features, as already accom-
plished by the matrix in 3, but also normalizes the correlations. To be precise,
it is the Pearson correlation which is used. We demonstrate that this normal-
ization is essential to the success of the Barlow Twins approach. As shown in
the previous section, using the raw cross-correlation matrix alone is insufficient
for effective backbone pretraining. However, we show that using the Pearson
correlation makes this possible.

Analog to equation 4, the complete Barlow-Twins loss is determined by the
Pearson correlation over the whole data distribution µ(x) and all combinations
of TA and TB . We obtain
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with

σi =

√∫ ∑
T∈T

[zi(x)]2 dµ(x)

as the standard deviation of the i-th output neuron of the projector network
over all x from µ(x) and all augmentations T ∈ T . Accordingly, σj is the
standard deviation of the j-th output neuron. Note that Ci,j is symmetric.

The Pearson correlation ranges between −1 and +1, with +1 indicating
perfect positive correlation. In the optimum of the Barlow Twins loss, this
perfect positive correlation is required for the diagonal elements Ci,i. zA

i (x)
and zB

i (x) correlate perfectly positively, if and only if for each x

zA
i (x) = azB

i (x) + b for each pair TA, TB ∈ T

is valid for a fixed a, b ∈ R with a > 0. However, this implies that for a given
x, this equation must be valid for a TA, TB as well as vice versa for TB , TA.
Then, for the given x we obtain zA

i (x) = azB
i (x) + b and zB

i (x) = azA
i (x) + b.

Subtracting both equations yields zA
i (x) − zB

i (x) = a(zB
i (x) − zA

i (x)). Since
a > 0, this is valid if and only if zA

i (x) = zB
i (x).

Since this holds for each i and TA, TB , we can conclude that in the min-
imum of the Barlow-Twins loss with the Pearson correlation for any image x
the corresponding output vector z(x) must remain invariant to any distortion
(augmentation) of the image x. This is equivalent to the minimum of∫ ∑

TA,TB∈T

||zA(x)− zB(x)||2 dµ(x) (8)



in sample contrastive learning approaches.

4 Conclusion

We demonstrated that the core idea behind Barlow Twins — reducing redun-
dancy by maximizing the correlation between corresponding features and min-
imizing the correlation between non-corresponding features in distorted images
— is insufficient on its own for pretraining a backbone network. The cross-
correlation matrix of arbitrary outputs, even from untrained backbones, is sym-
metric and, hence, can be diagonalized already by a linear projection head.
Since non-zero eigenvalues of the cross-correlation matrix are enforced, it is en-
sured that the backbone output spans the entire space, preventing degenerate
solutions such as constant or zero output.

The primary objective of self-supervised learning is to achieve invariance
in the backbone output for perturbed images. Approaches like VICReg and
other contrastive methods explicitly incorporate terms like equation 8 in the
cost function. We showed that the Barlow Twins method achieves the same
invariance by using the Pearson correlation matrix, which inherently includes
normalization. This normalization is crucial, as it enforces the same minima in
the cost function as the explicit term 8. Without this normalization, the Barlow
Twins loss does not enforce meaningful solutions.
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