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Abstract. Partial differential equations (PDEs) find applications across
various scientific and engineering fields. There is a growing trend for in-
tegrating physics-aware machine learning models to solve PDEs. Among
them, the Finite Volume Neural Network (FINN) has proven to be effi-
cient in uncovering latent structures in data. This study explores the ca-
pabilities of FINN in the investigation of shallow-water equations, which
simulate wave dynamics in coastal regions. Specifically, we investigate the
efficacy of FINN in reconstructing underwater topography. We find that
FINN excels at inferring topography solely from wave dynamics, stress-
ing the importance of application-specific inductive bias in neural network
architectures.

1 Introduction

Machine learning models that incorporate physical principles follow the gov-
erning rules of the problem at hand. Physics-aware models are reported to be
superior to pure ML models when simulating physical processes [1, 2]. However,
various physics-aware models lack the ability to explicitly incorporate physi-
cal equations. The recently introduced finite volume neural network (FINN)
marks a significant step forward in addressing this limitation [3, 4, 5]. FINN
combines partial differential equations (PDEs) with the learning capabilities of
artificial neural networks and models spatiotemporal dynamics in a mathemati-
cally compositional manner. A notable feature of FINN is its ability to directly
incorporate boundary conditions (BCs) in order to explicitly enforce the physical
structure in the model [4]. As a result, FINN generalizes well beyond the BC
values encountered during training and infers unknown BCs to reveal the hidden
structure in the data [6, 7].

In this study, we expose FINN to a new set of PDEs, called shallow-water
equations (SWEs) that model the wave dynamics in coastal regions. We further
study the capability of FINN in reconstructing the topography depending on the
waves at the surface. We adapt FINN’s architecture to SWE and by doing so,
open a new pathway for broader applications of FINN. We compare the quality
of the inferred topography with two models, DISTANA [8] and PhyDNet [9].
Our results indicate that all models are able to model the physical processes and
predict the wave patterns. Yet, FINN’s induced physical structure bias results



in smaller modeling errors and a higher accuracy in reconstructing the hidden
topography. Our code repository can be found under this link.

2 Data and Methods

SWEs represent fluid dynamics, where the wavelength λ (distance between con-
secutive waves) is much larger than the depth of the fluidH, i.e., H

λ ≪ 1 (shallow
water assumption). As a simplified version of the Navier-Stokes equations, SWEs
find most applications in aquatic environments, although the corresponding fluid
does not necessarily have to be water. The specific form of the SWEs employed
in this study are taken from [10] and defined as follows:
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where u and v are the velocity vectors in x- and y-directions, respectively. H is
the topography of the fluid representing the depth of each grid cell in meters. η is
the displacement of the free surface, essentially capturing the vertical deviation
of the fluid surface from the mean depth as waves propagate. Lastly, t denotes
time and g expresses the gravitational force.

2.1 Models

This section provides an overview of the models under comparison: PhyDNet,
DISTANA, and FINN. The descriptions of PhyDNet and DISTANA are pre-
sented in less detail in comparison to FINN, as the model of interest.

PhyDNet PhyDNet is a physics-aware encoder-decoder model introduced in [9].
After encoding the input at time step t, the information is disentangled into two
separate networks: PhyCell and ConvLSTM-Cell. Inspired by physics, PhyCell
implements spatial derivatives up to a desired order and can approximate so-
lutions of a wide range of PDEs, e.g., the heat equation, wave equation, and
the advection-diffusion equation. ConvLSTM-Cell is incorporated to learn the
spatiotemporal processes, resulting in a hybrid model.

DISTANA The distributed spatiotemporal graph artificial neural network ar-
chitecture (DISTANA) is a hidden state inference model for time series predic-
tion. It encodes two different kernels in a graph structure. First, the prediction
kernel (PK) network predicts the dynamics at each spatial position while be-
ing applied to each node of the underlying mesh. Second, the transition kernel
(TK) network coordinates the lateral information flow between PKs. Due to the
regular grid structure of the data in this work, we implement linear mappings
as TKs, as done in the original work [8].

https://github.com/AdaptiveAILab/finn-topography-inference/tree/main
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Fig. 1: Modified process chain implementation of FINN. Dark black arrows show
the forward pass. The prediction is fed back into the model autoregressively as
closed-loop predictions (dashed arrow).

FINN The finite volume neural network, introduced in [4, 3] represents a novel
fusion of the finite volume method (FVM), a numerical discretization technique
in computational physics, with the learning capabilities of neural networks. The
FVM spatially discretizes continuous PDEs by transforming them into algebraic
(linear) equations defined over a finite number of control volumes. These control
volumes possess distinct states and exchange fluxes according to the conserva-
tion law. By embedding FVM principles into FINN, the model is inherently
constrained to enforce (partially) known laws from physics to excel in inter-
pretability, generalization, and robustness. Originally, FINN was designed to
solve non-linear spatiotemporal advection-diffusion-reaction processes, formu-
lated in [4] as
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where u encodes a state as a function of time t and spatial coordinate x. D is
the diffusion coefficient, which manages the equilibration between high and low
concentrations, v is the advection velocity, which represents the movement of
concentration due to the bulk motion of a fluid, and q is the source/sink term,
which increases or decreases the quantity of u locally.

In order to model spatiotemporal wave dynamics, we reformulate FINN such
that its structure resembles the SWE. Concretely, we employ a two-stage process,
first solving for velocities u and v by means of which η is solved subsequently.1

The resulting process chain is outlined in Figure 1. Each FINN module imple-
ments an adequately tailored FINN architecture to approximate the different
components of SWE, i.e., u, v, and η.

In order to expose the models to a diverse range of topographies, we trained
the models on different H grids (see left plot in Figure 2 for an example), where
H is rotated with a random angle ϕ ∈ [0, 2π] and the depth of H is scaled with a
random number β ∈ [0.5, 1.0] such that the average depth is between 50−100m in
each sample. After training, we challenge models to infer a bumpy and more non-
linear topography (see right plot in Figure 2) by setting H as learnable parame-
ter. To enforce the inference of a continuous surface, a smoothness-constraint λ

1We employ the Euler solver here, although more sophisticated solvers can also be imple-
mented. In our case, however, more advanced solvers did not improve the results.



(a) Train (b) Inference

Fig. 2: Topography of the training and inference set. The training topography
(left) is smooth and exhibits a larger depth range. The inference topography
(right) is more non-linear and bumpy. The depth scale for the particular topog-
raphy was randomly chosen as β = 0.68.

(set to 5× 10−3 for PhyDNet and 5× 10−7 for the others) was introduced, pe-
nalizing significant deviations between adjacent cells. Furthermore, to facilitate
the inference of H at the boundaries where the velocity vectors are zero (no-slip
condition), we introduce another regularization term, λedge = 5× 10−7 to push
the inferred H towards the values sitting well in the simulation domain. The use
of λedge improved the performance across all models, albeit both PhyDNet and
DISTANA still struggled to produce accurate reconstructions along the edges.

3 Results

Throughout all experiments, the primary objective is to reconstruct the topog-
raphy with high accuracy. Main results are reported in Table 1. While all three
models successfully learn the SWEs and accurately predict subsequent wave
states with varying levels of accuracy, DISTANA and FINN outperform PhyD-
Net in reconstructing the topography. The inference error exhibited by PhyDNet
can be attributed to the application of a stricter grid regularizer aimed at en-

Table 1: Reconstruction errors per model. Test error relates to deficits in pre-
dicting the shallow water dynamics under use of the inferred topography.

Model (params) DISTANA (19k) PhyDNet (185k) FINN (230)

Train error (6.4±1.6)×10−5 (5.2±2.0)×10−5 1×10−5±6×10−9

Test error (5.0±1.1)×10−5 (5.9±4.4)×10−5 (2.7±0.1)×10−6

Full rec. error 0.913± 0.125 10.71± 5.906 0.262± 0.013
Inner rec. error 0.516± 0.121 10.33± 6.160 0.237± 0.018
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(d) Data

Fig. 3: Examples of inferred topography fields per model in 3D (top) and as a
top-view contour plot (bottom).

hancing the reconstruction quality. However, when applying the same λ value
for PhyDNet as used in DISTANA and FINN, the reconstruction error triples
and the inferred topographies exhibit large spikes. We depict the most accu-
rate topography reconstructions of each model in Figure 3, which confirm that
FINN and DISTANA manage to reconstruct the topography with FINN scoring
superior. In particular, DISTANA exhibits notable deviations along the edges,
which we attribute to an inadequate representation of the boundary condition.
In contrast, FINN applies boundary conditions rigorously based on the governing
equations, whereas DISTANA and PhyDNet rely on convolution operations for
this purpose, leading to poorer edge reconstruction. To reduce boundary effects,
we also present inference errors in Table 1, calculated within a central 28 × 28
subregion extracted from the original 32 × 32 field. While the error difference
between DISTANA and FINN is closer within the inner domain, DISTANA’s
error still remains twice as large compared to FINN. PhyDNet, on the contrary,
fails to produce meaningful topography reconstructions, which is also reflected
in the high standard deviations.

4 Discussion

We assessed the capabilities of DISTANA, PhyDNet, and FINN at inferring
underwater topography, which parameterizes the shallow water equations. FINN
was modified to characterize a system of three coupled PDEs. Essentially, we
implemented a two-staged process combining two separate FINN modules to
subsequently generate a prediction for the SWEs velocity vectors u and v, which
give rise to approximating the actual wave depth η.

Along with the lowest test error, the resulting FINN model produced accu-
rate reconstruction of the underwater topography. DISTANA managed to solve



the SWE system and inferred the underlying topographical structure reasonably
well, which aligns with findings from a previous study [11], where DISTANA in-
ferred a latent land-sea mask. PhyDNet, despite its physics-aware formulation,
managed to model the SWE but struggled in the generalization task to recon-
struct a different topography.

In conclusion, this study suggests implementing the physical structures into
deep learning models, encapsulating application-specific inductive bias to com-
plement the learning abilities of neural networks. Furthermore, given that SWE
represents a simplified version of Navier-Stokes equations, further research efforts
could be directed towards integrating more complex versions of these equations
into FINN’s framework.
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