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Abstract. Optimizing chemical properties is a challenging task due to
the vastness and complexity of chemical space. Here, we present a gen-
erative energy-based architecture for implicit chemical property optimiza-
tion, designed to efficiently generate molecules that satisfy target proper-
ties without explicit conditional generation. We use Graph Energy Based
Models and a training approach that does not require property labels. We
validated our approach on well-established chemical benchmarks, showing
superior results to state-of-the-art methods and demonstrating robustness
and efficiency towards de movo drug design.

1 Introduction

Generating molecules that satisfy specific chemical constraints is crucial in mod-
ern de novo drug design. Traditional generative approaches for property opti-
mization generally involve training deep learning models on large datasets as
general-purpose molecule generators. Prior works explored property optimiza-
tion using Reinforcement Learning (RL) methods to guide molecular generation,
such as GraphDF [7] and GraphAF [8], or Bayesian Optimization (BO) on the
latent space as proposed in JT-VAE [4]. MoFlow [10] uses Classifier-Based (CB)
guidance to direct the generation towards specific objectives. GraphEBM 6]
tackles molecular generation with energy-based models (EBM), but the results
of property optimization remain unclear, as it restricts to optimizing numerically
quantifiable properties and exhibits high variance in generation, which affects
consistency and reliability of generated molecules. Despite their advancements,
the methodologies referenced above present several limitations: RL methods
are known to be unstable and computationally demanding, while BO and CB
methods rely on supervised learning and require large labeled datasets to work
properly, which are rarely available in the chemical domain.

Motivated by the need of overcoming existing limitations in optimization
methods, especially in real-world scenarios where labeled data is scarce and com-
putational efficiency is crucial, we present a novel Unspervised Energy-based
Molecule Optimization (UEMO) capable of implicitly learning chemical prop-
erties and efficiently generating molecular graphs without the need of labeled
data or explicit optimization strategies. Our method leverages the capabilities
of Graph Neural Networks (GNNs) [1] to process molecular graphs and utilizes
Langevin dynamics [2] at sampling time to generate new molecules. We tested

*This work is partially supported by the Next Generation EU programme under project
FAIR (PE00000013), Spoke 1



our approach on ZINC-250K [3], evaluating its performance in optimizing QED
and LogP chemical properties, and providing results on the constrained opti-
mization of existing compounds.

2 Methodology

Whilst most models are trained as general-purpose generators, with property-
specific optimization treated as a separate post hoc task, we exceed such limita-
tions by proposing a novel method that implicitly embeds a strong bias toward
the desired objective directly in the generative model, eliminating the need for
supervision. Given a molecular input space X, let S C X" the subset of molecules
that satisfy given property constraints. The goal is to train the generative model
that maximizes the probability of generating samples coming from S. Such a
result can be pursued by resorting to domain-specific datasets guaranteed to
reflect the targeted property (e.g., binding affinity to a specific property), or by
employing off-the-shelf property predictors to filter molecules that satisfy desired
constraints from existing datasets. This concept-based approach is versatile and
applicable to any desired chemical objective. In contrast to baseline methods —
GraphEBM [6] in particular, whose optimization strategy is limited by numer-
ical property estimates to scale the energy term — we provide a generalizable
setting that allows for the optimization of arbitrary properties without requiring
explicit values or labeled data. This is particularly advantageous when dealing
with complex or non-numerical targets, such as binding affinity or toxicity.

Let ¢ = (A,X) be a molecular graph, consisting of n atoms and m atom
types, where A € R™"*"*(¢+1) ig the adjacency tensor describing chemical bonds?,
and X € R™*™ is the one-hot-encoded atom representation. The energy function
is defined as a function Ey(g) : X — R with learnable parameters 0 that assigns
a scalar value to each molecule in the input space. The probability distribution
over the input space is given by:

po(s) =  exp(~Ey(g).

where Z = [ exp(—FEjy(g))dg is the intractable marginalization term. In this
work, we model the energy function Ey using a Graph Convolutional Network
(GCN) [5]. The GCN consists of L message-passing layers, after which a graph-
level embedding z € R4 is computed by applying a mean-pooling operation on
the L-th node representations as follows: z = MeanPooling(H(")). Finally, the
energy value is obtained by passing z through J Fully Connected (FC) layers:

Ey(g) = EnergyHead(z) = FC;(FCj_1(... FC1(2)))

The schematic representation of the proposed architecture is shown in Figure 1.
Given the energy Ep(g) € R, generating samples from the associated probability
distribution is not trivial due to the intractability of the marginalization term.

le is the number of bond types, with an additional type to indicate the absence of a bond.
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Fig. 1: UEMO architecture. In the example, n = 7,m = 4, and e = 3.

In this work, we use Langevin dynamics which directly uses the gradient of the
energy function to generate samples:

€
Jit1 = gi — EngQ(gi) + w;, wi ~ N(0,€),

where € is the step size. For i — oo and € — 0, this process is guaranteed to
generate samples from the true distribution pg. UEMO is trained by modeling
the energy of the space of the molecules X through the distribution implic-
itly defined by Ey. This is achieved by minimizing the negative log likelihood
L(0) = —Eg4~s(log pe(g)], under the empirical distribution of the dataset S. This
objective is known to have the formulation:

VoL(0) =Byt os [VoEo(9H)] = By epy [VoEo(g7)]

here we rely on Langevin dynamics to generate negative samples g~ ~ py. Ini-
tial sampling hyperparameters for Langevin dynamics were chosen according
to [2, Appendix A.11]. As initial configuration for the chain ¢;,...g; , we lever-
age Persistent Contrastive Divergence (PCD) [9], by implementing a limited-size
replay buffer B to store samples generated in previous iterations: in our imple-
mentation 95% of the initializations are drawn from B and 5% from standard
Gaussian noise. New molecules are sampled from the trained model by initializ-
ing the Langevin dynamics with molecular graphs g drawn from Gaussian noise,
such that Ag,Xg ~ N(0,1). At each step of the sampling chain, the generated
adjacency tensor is symmetrized to ensure consistency and used as initialization
for the next step, following A;11 = 3(A; + AT). Additionally, we compute
the target property of the intermediate molecule at every step of the chain to
maintain stability and prevent the local representation from collapsing.

3 Experiments

We evaluated UEMO in two different property optimization tasks: Quantitative
Drug Likeliness (QED) and Octanol-Water Partition Coefficient (LogP). To per-
form these experiments, we used the publicly available dataset ZINC-250k, which
consists of 250,000 chemical compounds annotated with the above-mentioned



properties. To facilitate implicit optimization, we divided the dataset in two
partitions, each one reflecting a desired property constraint. Specifically, our
partition matched high QED score (> 0.75) and high LogP coefficient (> 3)
constraints. The partitioning was chosen to reflect real-world scenarios, where
datasets targeting specific molecular properties are often small. The final par-
titions consisted of 54k and 34k molecules for QED and LogP, respectively. In
addition to property evaluation, we performed benchmarks on molecular graph
generation using three widely adopted metrics: validity, novelty, and unique-
ness. These metrics are computed on 5,000 randomly generated molecules. We
compared our methodology against five strong baselines [4,6-8,10] by running
their original source code and generating graphs with their property optimization
strategies to ensure a fair comparison. JT-VAE results are from [7]. Firstly, we
report results for the QED optimization task. We trained UEMO on the high-
QED partition of the dataset and we randomly sampled a batch of molecules.
Quantitative results are presented in Table 1.

Model Validity Uniqueness Novelty Avg. QED 1 Top 1 1
GraphDF 100% 100% 100% 0.53 £0.28 0.948
GraphAF 100% 100% 100% 0.52 £0.17 0.948
GraphEBM 100% 83.1% + 2.7% 100% 0.44 £0.11 0.781
MoFlow 100% 96.8% + 1.6% 100% 0.59 +0.23 0.948
JT-VAE 100% 100% 100% n.a. 0.925
UEMO 100% 100% 100% 0.79 + 0.12 0.948
Avg. LogP 1 Top 1 1
GraphDF 100% 100% 100% 9.13 £ 1.00 14.12
GraphAF 100% 100% 100% 8.15 &+ 3.90 14.82
GraphEBM 100% 82.6% + 2.8% 100% —1.50 +2.34 3.29
MoFlow 100% 95.4% + 1.6% 100% —2.30 £ 5.37 3.93
JT-VAE 100% 100% 100% n.a. n.a.
UEMO 100% 100% 100% 9.30 + 2.13 12.66

Table 1: Metrics for molecules generated in both optimization tasks.

Our model achieves perfect validity, uniqueness, and novelty ratios, matching
the performance of all tested models except GraphEBM, which exhibits a sub-
stantially lower uniqueness ratio. Furthermore, our model significantly outper-
forms all other baselines with an average QED score of 0.79 £+ 0.12, demon-
strating that our implicit approach is more effective at sampling various and
complex molecular configurations from the learned energy landscape. Addi-
tionally, it shows lower variance compared to the baselines, highlighting the
robustness of our method in directing the generative process towards optimiz-
ing the desired chemical property. As illustrated in the right pane of Figure 2,
the Kernel Density Estimation (KDE) plot for the QED property of the gen-
erated molecules aligns closely with that of the training partition. This align-
ment confirms our model’s ability to sample challenging molecules from a small,
specific region of chemical space. The plot further emphasizes the stability of
the generative process, validating the reliability of our implicit optimization
strategy. We then report LogP optimization results in Table 1 (bottom). Our
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Fig. 2: QED (left) and LogP (right) distributions of the molecules generated by
the different methods compared to the full, not partitioned, ZINC-250k dataset.

experiments demonstrate that our model achieves performance comparable to
state-of-the-art autoregressive strategies [7,8], generating molecules with an av-
erage LogP of 9.30 4+ 2.13. Moreover, UEMO outperforms one-shot generative
methods [4,6,10], which either failed the task or produced molecules that did
not satisfy the required constraints. Although maximizing LogP alone does not
have direct practical applications and is considered a relatively straightforward
task (since high LogP values can be trivially achieved by adding long chains
of carbon atoms), success in this task highlights the flexibility of our proposed
methodology across diverse and distinct generative tasks, effectively capturing
chemical information from small and domain-specific datasets. This result can
be visualized in Figure 2, where the majority of molecules generated by UEMO
exhibit high LogP values with low variance, emphasizing the robustness of our
approach. A visual representation of UEMQ’s generated molecules is presented
in Figure 3 for the QED optimization task.

While achieving state-of-the-art performance in property optimization tasks
such as QED and LogP, UEMO also stands out for its remarkable sampling
efficiency. Unlike baseline strategies, which require significant computational re-
sources, our model demonstrates a highly efficient generative process. Notably,
UEMO is able to generate molecules at an average rate of 14.6 + 1.2s/100mol.
We provide a comprehensive comparison of sampling times in Table 2. This
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Fig. 3: Curated samples of molecules generated in the QED optimization task.



UEMO GraphDF  GraphAF GraphEBM MoFlow JT-VAE
14.6 +1.2 174 £6.1 41.5 £+ 5.3 212.1+4.1 366 + 3.7 n.a.

Table 2: Time taken (in seconds) to generate 100 molecules.

substantial efficiency arises from two key factors. First, our implicit opti-
mization strategy eliminates the need for expensive sampling strategies, which
are employed by other methods. Second, UEMO architecture is exceptionally
lightweight, consisting in 0.25M trainable parameters, which is orders of magni-
tude smaller than many state-of-the-art models. This efficiency not only reduces
computational overhead, but also makes UEMO particularly well suited for ap-
plications that require a rapid and focused exploration of the chemical space.

4 Conclusions

In this paper we presented UEMO, a novel EBM for molecular generation and
chemical property optimization. Our implicit optimization approach demon-
strated strong performance, outperforming existing models. Moreover, our
lightweight model and innovative approach showed outstanding sampling effi-
ciency, significantly reducing graph generation times. In the future, we plan to
extend this work to larger and drug-specific datasets targeting diverse proper-
ties to generate highly specific graphs. Additionally, we plan to develop training
methodologies that incorporate chemical knowledge into the energy landscape,
ensuring a chemically informed generative process that adheres to chemical rules.
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