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Abstract. This paper introduces Trajectory-Embedded Matryoshka
Representation Learning (TE-MRL). This novel framework synergies the
capabilities of trajectory representation learning with the adaptability and
efficiency of Matryoshka Representation Learning (MRL). TE-MRL is en-
gineered to generate adaptive, multi-granular embeddings that efficiently
capture the spatial-temporal dynamics inherent in trajectory data. We
evaluate TE-MRL on the Porto dataset, focusing on trajectory similarity
and k-nearest trajectory similarity tasks. Our findings demonstrate that
TE-MRL preserves critical features such as travel semantics and tempo-
ral regularities while it can significantly reduce computational time and
memory footprint. The proposed approach matches existing methods’ ac-
curacy and efficiency but demonstrates robust adaptability under vary-
ing computational constraints. Furthermore, we proposed a two-stage
retrieval pipeline to enhance computational time while maintaining the
same precision. We reduced the computation time by 8× while maintain-
ing state-of-the-art precision. The effectiveness of TE-MRL in handling
the complexity of the Porto dataset underlines its potential for broader
applications in urban computing and mobility analytics.

1 Introduction

Representation of spatial-temporal data, known as Trajectory Representation
Learning (TRL), has gained prominence with the increasing demand for machine
learning approaches that extract meaningful spatial features, enhancing data
analysis in GPS-based systems [1]. Tasks such as trajectory search and trajectory
similarity are just a few examples of the trajectory representation scenario, where
we can highlight two main weaknesses: (1) retrieval efficiency (time required
to search for the most similar trajectory in the database), which becomes a
compromising factor [2]; (2) exhaustion of memory in low resource devices [3].

Deep metric learning systems became a standard in these tasks [1, 2, 4],
dropping the initial quadratic time complexity to a linear complexity [2]. While
these techniques aim to balance the inherent trade-off between efficiency and
effectiveness, the time required for this lookup algorithm remains closely tied
to the embeddings’ dimensionality and associated memory usage. This leads to
choosing between higher-dimensional vectors with strong representation capa-
bilities and less informative lower-dimensional vectors.
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In order to address this trade-off, Kusupati et al. [5] introduced Matryoshka
Representation Learning (MRL). This framework uses a training loss to output
a vector that maintains good representation capabilities across various dimen-
sional granularities. Starting from [1], this paper aims to enhance efficiency in
trajectory retrieval over time and memory usage by leveraging the training loss
presented by Kusupati et al. [5]. We propose a reproducible pipeline that uses
the Matryoshka approach and is adaptable to various Trajectory Representa-
tion Learning tasks. In particular, the main contributions of this paper are the
following:

• A graph neural network able to nest information at various levels of gran-
ularity within a single vector, enhancing model adaptability and efficiency
without increasing computational overhead.

• A retrieval pipeline, called two-step search approach, capable of increasing
the efficiency by a factor of 8× while maintaining high accuracies over the
two analyzed different tasks.

By incorporating the Matryoshka loss [5] we obtain a refinement of the archi-
tecture proposed in [1] which produces smaller embeddings without sacrificing
performance. This allows us to enhance retrieval efficiency while reducing both
computational and storage demands.

2 Related work

Several studies [6, 7] have investigated trajectory representation using temporal-
spatial features, producing embeddings for tasks like trajectory similarity search.
Deep learning models, particularly sequence-to-sequence (seq-to-seq) architec-
tures such as LSTMs, have achieved state-of-the-art performance in this domain.

Li et al.[6] identified a linear correlation between dataset size and retrieval
time, emphasizing the challenges of scaling. Traditional methods often relied on
a “one model, one task” paradigm, addressing tasks like clustering or travel time
prediction in isolation. In contrast, Jiang et al.[1] introduced a versatile trajec-
tory representation model with robust feature extraction capabilities, achieving
strong performance across multiple tasks on the Porto dataset: 1.897 · 10−3 MR
for similarity, 0.890 · 10−4 accuracy for classification, and 1.334 · 10−3 MAE for
travel time estimation. As mentioned in the previous section, our work builds
on the findings of Jiang et al. findings [1] and of Kusupati et al. [5].

3 Methodology

We adapted the methodology of Jiang et al. [1], embedding spatial and temporal
information with a modified loss function using the Matryoshka technique to
optimize multiple output dimensions. The model performance was evaluated in
relation to embedding dimensionalities and memory usage.
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Fig. 1: Main modification to Jiang et al. [1] work. (a) shows Lcon, the Ma-
tryoshka contrastive loss. (b) presents the two-stage retrieval process.

3.1 Spatial-Temporal architecture

Jiang et al. [1] introduced “START”, an architecture to encode temporal (time
of the day) and spatial information (trajectory information and road network)
jointly. The architecture encodes trajectory information by adding time-of-day
and day-of-week information to the representation. The architecture uses a
graph neural network to convert the road network into road representation vec-
tors. To support multiple downstream tasks, the work implemented two different
losses:

• Lmask: Span-Masked Trajectory Recovery, where part of the input road
network is masked, the model tries to recover it. This loss captures co-
occurrence relationships between roads and contextual information of the
road network.

• Lcon: Trajectory Contrastive Learning, where similar vectorial representa-
tions are brought closer in latent space. This objective is meant to improve
the modeling of the spatial-temporal characteristics and travel semantics.

The final pre-training loss Lpre is defined by the formula in Eq. 1:

Lpre = (1− λ) Lmask + λ Lcon (1)

where λ acts as a weight, balancing the two tasks.

3.2 Efficiency analysis with Matryoshka loss

We adapted the former architecture to obtain a model capable of producing
a vector that maintains good semantic representation capabilities even when
truncated by the last dimensions. In these terms, we modified the Trajectory
Contrastive Learning objective by incorporating Matryoshka loss [5].



Model
Most Similar Search Trajectory Search

MR MRR HRQ1 HRQ5 HR@10 Precision
No Matryoshka 1.3 0.98 0.97 0.99 0.99 0.80

256 1.3 0.99 0.98 0.99 0.99 0.79
128 1.4 0.99 0.98 0.99 0.99 0.78
64 1.5 0.99 0.98 0.995 0.997 0.75
32 2.0 0.98 0.97 0.99 0.994 0.70
16 12 0.95 0.94 0.97 0.98 0.61
8 31 0.85 0.80 0.90 0.93 0.50

Table 1: Performance comparison of model metrics with and without Matryoshka
Loss across various embedding sizes in trajectory analysis. The tasks are Most
Similar Search and 5-Nearest Trajectory Search.

This is illustrated in Fig. 1a where the Lcon in-batch contrastive loss used by
Jiang et al. [1] aligns similar trajectories with the same dimensionality while mov-
ing away from the other representations—also with the same dimensionality—
present in the batch. We have composed each batch of N = 32 elements, each
containing a couple of similar trajectories treated as ground truth, where each
trajectory is represented with the trajectory and the road network representa-
tion (see Section 3.1). We applied the Matryoshka loss [5] to a set d of different
dimensionalities where d = {256, 128, 32, 16, 8}, obtaining |d| different losses,
subsequently summated in

∑
dim∈d Lcon

dim. We have that the final loss is repre-
sented by Eq. 2:

Lpre = (1− λ) Lmask + λ
∑

dim∈d

Lcon
dim (2)

The parameter λ balances the importance of the masked contrastive loss, Lmask,
against the summation of contrastive losses across different embedding dimen-
sions, Lcon

d , ensuring that the network does not overfit a specific task.
We trained the model with AdamW as an optimizer, with a batch size of 32

elements for 20 training epochs. We initially set the learning rate at 2 · 10−4

with a warmup for the first four epochs and decreases using a cosine annealing
schedule. The λ weight is settled at 0.6. We evaluated the model with different
dimensionalities on the Trajectory Similarity Search task and k-nearest trajec-
tory search with the Euclidean distance. We assessed the efficiency by relating
the model’s performance to time and memory consumption.

3.3 Two-stage retrieval pipeline

We designed a two-step retrieval (Figure 1b) to optimize the time search while
maintaining the same model performance. We define the stages as follows: (1)
First lookup phase: we use a lower dimensionality to shrink the search space
to a small subset of 1000 samples. (2) Second lookup phase: we use the full
dimensionality to retrieve the most similar sample out of the 1000 subset.

We conducted a grid search over the vectors’ dimensionality and the subset’s
dimension to obtain the best-performing algorithm.
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Fig. 2: Performance analysis of embedding sizes using matryoshka Loss. (a)
shows the precision achieved at various embedding sizes with Two-Step. (b)
charts the computational time required at different dataset sizes for varying
embedding sizes.

4 Discussion

The results presented in this study underscore the efficacy of Trajectory-Embedded
Matryoshka Representation Learning (TE-MRL) in managing the demands of
computational resources in trajectory data analysis. By incorporating MRL
into trajectory analysis, TE-MRL facilitates a hierarchical yet computationally
efficient approach to understanding spatial-temporal dynamics, as evidenced by
the results on the Porto dataset. As shown in Table 1, TE-MRL maintains high
levels of accuracy in Most Similar Search and Trajectory Search tasks across
various embedding sizes. Even at reduced dimensions (e.g., 16 and 32), TE-
MRL achieves good results in terms of Mean Reciprocal Rank (MRR) and Hit
Rates (HR). This adaptability is crucial for applications where computational
resources are limited or where real-time data processing is required.

Fig. 2a shows the performance of the two-stage search approach within the
TE-MRL framework, focusing mainly on the precision achieved with initial em-
beddings of varying dimensions transitioning to a 256-dimensional space.

We showed that by employing 32 dimensions during the initial retrieval
stage and subsequently transitioning to 256 dimensions for the second stage,
we matched the performance of the 256-dimensional matryoshka single-stage
approach with a 8× speed-up in time. This precision result underscores the ef-
ficacy of the TE-MRL framework in utilizing lower-dimensional embeddings to
achieve computational efficiency without compromising the quality of the results.

Fig. 2b demonstrates the scalability of TE-MRL across different dataset sizes
and embedding dimensions. The ratio of computational time related to the size
of the dataset decreases by half with each dimensionality reduction. Hence, the
two-step retrieval process helps to moderate the time complexity of computation
by using smaller embeddings in the initial retrieval phase while ensuring that
precision is not compromised.



5 Conclusion

In this work, we present a promising approach to trajectory data analysis that
combines the strengths of Graph Neural Network with Matryoshka Represen-
tation Learning to offer a scalable and efficient solution. Its application could
extend beyond the tested scenarios, providing valuable insights into various real-
world applications that require efficient data processing and retrieval capabilities.
The TE-MRL framework leverages MRL to encapsulate information at multiple
granularities within a single vector, significantly reducing memory usage while
ensuring seamless adaptability to various computational constraints. Our two-
stage retrieval pipeline achieves precision levels close to state-of-the-art methods
- within a −2% gap -, delivering an 8 times improvement in computational ef-
ficiency. By accepting a −5% trade-off in precision, the speedup increases to
16 times. This approach effectively balances latency and memory requirements
while maintaining high performance and accuracy across a wide range of appli-
cations.
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