
Robust Evolutionary Multi-Objective Neural
Architecture Search for Reinforcement Learning

(EMNAS-RL)

Nihal Acharya Adde1,2, Alexandra Gianzina1, Hanno Gottschalk2, Andreas Ebert1

1- Volkswagen Group Innovation, Volkswagen AG, Wolfsburg, Germany

2- Institute of Mathematics, TU Berlin, Berlin, Germany

Abstract. This paper introduces Evolutionary Multi-Objective Neu-
ral Architecture Search (EMNAS) for the first time to optimize neural
network architectures in large-scale Reinforcement Learning (RL) for Au-
tonomous Driving (AD). EMNAS uses genetic algorithms to automate
network design, tailored to enhance rewards and reduce model size with-
out compromising performance. Additionally, parallelization techniques
are employed to accelerate the search, and teacher-student methodologies
are implemented to ensure scalable optimization. Experimental results
demonstrate that tailored EMNAS outperforms manually designed mod-
els, achieving higher rewards with fewer parameters.

1 Introduction

Neural Architecture Search (NAS) automates the traditionally manual and time-
intensive process of designing neural network architectures. NAS algorithms use
different methods like Reinforcement Learning (RL), Evolutionary Algorithms
(EA), and Gradient-based Optimization (GO), to explore potential architectures
to identify the most effective designs for specific tasks. EAs are particularly
effective, consistently achieving state-of-the-art performance [1], with superior
anytime performance [1] that enables the discovery of smaller models compared
to RL and addresses multi-objective problems in NAS [2, 3]. This approach seeks
high-performing models, reflected in RL rewards, while minimizing constraints
such as parameter size for memory efficiency and Floating Point Operations Per
Second (FLOPS) to meet power consumption or latency requirements.

This paper explores the use of EAs to optimize network architectures for an
RL task in Autonomous Driving (AD), aiming to outperform human-designed
baselines. A teacher-student framework is employed to transfer learned knowl-
edge across generations, where student networks are trained via behavior cloning
[4] using the top-performing teacher network from the previous generation.

Autonomous Driving Task: The AD task is trained in the Unity 3D simulator
[5] using the Proximal Policy Optimization (PPO) algorithm [6]. In this setup,
multiple agents navigate a three-lane oval track, aiming for smooth, collision-
free driving with minimal abrupt movements. Agents use semantic segmentation
from a forward-facing camera to predict trajectory points, which are processed
by an external vehicle controller for maneuvering. Reward structures incentivize



precise trajectory placement and smooth, collision-free navigation. This study
focuses on optimizing convolutional network architectures for this RL task.

2 Background

Evolutionary Algorithms (EAs) are effective in NAS due to their ability to ex-
plore complex search spaces. Early methods like NeuroEvolution of Augment-
ing Topologies (NEAT) [7] demonstrated the potential of genetic algorithms in
evolving neural architectures. A comparison by [1] highlighted EA’s superior
performance over RL and random search, leading to models like AmoebaNet
[1]. Recently, Multi-Objective Evolutionary Algorithms (MOEAs) have been
applied to NAS, optimizing multiple objectives in parallel. Notably, NSGA-Net
[3] leverages MOEA to produce a Pareto front of architectures balancing ac-
curacy with computational efficiency for image classification tasks. Early Exit
Evolutionary Neural Architecture Search (EEEANet) [2] combines MOEA with
early-exit population initialization, yielding compact architectures for resource-
constrained devices. EEEANet uses tournament selection and non-dominated
sorting with the NSGA-II algorithm [8]. While NAS has advanced broadly, its
application to RL remains limited. Our research addresses this gap by apply-
ing EA-based NAS to optimize network architectures for RL in AD, aiming to
improve efficiency and scalability.

3 EMNAS-RL Methodology

Generate initial
population

Encoding Evaluate population
RL run in simulation

Mutation + Crossover + Survival mechanism Multi-objective
selection

Stop?

No

Yes

Define threshold of
parameters 

Searching model? Param < Return model

No

Yes

Early Exit FLOPS Para
mete

rsRe
wa

rd
s

Ge
ne

rat
ion

s

Fig. 1: Multi-objective Evolutionary Algorithm with EEPI.

In this work, we build upon EEEANet [2], using MOEA-based NAS as the
foundation. EA, based on Genetic Algorithms (GA), iteratively evaluates a
randomly initialized population of neural architectures using a fitness function
to assess performance [2]. The population evolves over generations through
crossover and mutation, where a population represents candidate architectures,
and a generation is a single evolutionary iteration. Figure 1 illustrates the algo-
rithm framework.

In MOEA, the fitness function combines multiple objectives: reward (model
effectiveness), computational cost (FLOPS), and model complexity (parame-



ters), minimizing negative reward while balancing efficiency, as shown in Eq.
(1).

f(x) = min {-Reward(x),FLOPS(x),Params(x)}, x ∈ X (1)

where x is an individual architecture in the set X of a given generation. These
objectives are normalized and equally weighted to optimize for limited com-
putational resources. The NSGA-II algorithm ranks the population based on
these objectives, evolving a diverse set of non-dominated solutions guided by
Pareto optimality principles [9]. We use a Pareto front-based tournament se-
lection, dividing the population into subsets to compare fitness values, with
winners reproducing through crossover and mutation to enhance diversity [2].
Crossover, mutation, and survival mechanisms drive the creation of new gen-
erations, retaining promising architectures while exploring the search space [2].
Mutation alters genetic information to explore new search space regions, while
crossover combines genetic material from two parent solutions to create off-
spring. Mutation and crossover probabilities, set as hyperparameters, determine
the likelihood of these operations. The search space includes various convo-
lutional operations (3 × 3, 5 × 5 depth-wise separable, dilated and inverted
convolutions, and 7 × 7 convolution), pooling operations (max and average),
and skip connections. These operators, encoded within normal and reduction
cells (chromosomes), alternate to form the network architecture. A normal cell
extracts features with unchanged dimensions, while a reduction cell downsam-
ples features, halving spatial dimensions to manage complexity. The encoding
scheme is defined as: chromosome(x) = LA1LA2, LB1LB2, LC1LC2, LD1LD2,
where L represents operators, and A,B,C,D are indices determining connec-
tions. GA initialization uses Early Exit Population Initialization (EEPI) [2],
ensuring initial population parameters remain below a threshold β (in millions).
NAS executes for user-defined generations and population sizes, progressively
discovering high-performing architectures.

Retaining the architecture search properties of EEEANet [2], including EA
with tournament selection, multiple objectives, and an early exit strategy, we
incorporated driving data from the simulation. The focus is on optimizing the
convolutional network component of the PPO algorithm while keeping the fully
connected layers constant. Based on our previous experiments, we observed that
improvements in RL reward performance become evident after approximately 20
epochs. Hence, to accelerate training, we use lower fidelity estimates and learning
curve extrapolation, ranking architectures after 20 epochs instead of the typical
300 full RL training epochs. We also emphasize relative ranking to mitigate
estimation bias. Additional lower fidelity adjustments include reducing input
resolution to 84× 84× 3, stacking 4 cells instead of 20, reducing blocks per cell
from 5 to 4, and halving initial channels to 16, where blocks define combinations
of convolutional operations, and initial channels set the first layer’s output.

In this paper we enhance EMNAS-RL methodology by two novel modules:

• Optimized Transfer Learning (OTL): From the second generation,
a teacher-student framework transfers the policy of the best-performing



network to student networks through behavior cloning[4], leveraging prior
knowledge to accelerate training.

• Parallel Training: EMNAS automates the parallel training of population
individuals using four NVIDIA V100 32 GB GPUs, running four trainings
simultaneously to optimize resource utilization.

4 Experimental Results

In this section, we describe the experimental setup and the impact of various
hyperparameters on the performance of the NAS process. To ensure consistency
across experiments, hyperparameters are kept constant: mutation probability is
0.1 and crossover probability is randomized between 0.5-0.9. The survival mech-
anism retains 1 to 4 individuals per generation, depending on population size.
The number of generations and population size impact the search performance
and duration, with larger values improving exploration but also increasing time.
In this study, small to mid-range values are used to balance search quality and
time efficiency. Additionally, the threshold parameter (β) for EEPI is varied to
assess its impact. Table 1 shows the effect of β on performance, with each run
repeated twice for better generalization. For fixed generation (Gen) and pop-
ulation (Pop) values, increasing β led to better rewards, improved parameters,
and lower FLOPs. The last column shows the GPU days required to complete
the NAS experiment on an NVIDIA Tesla V100-32GB, with minimal difference
in resource usage despite higher values of β. Based on these results, a threshold
β of 5 is chosen for subsequent experiments.

Table 1: Experiment details to compare the impact of threshold parameter (β).

Exp Gen Pop β Reward Param(M) FLOPS(G) GPU

1.1 6 6 3 452 1.13 1.13 1.0
1.2 6 6 5 482 1.02 1.01 1.4

2.1 10 4 3 412 0.99 0.99 1.2
2.2 10 4 5 622 0.98 0.93 1.5

Figure 2 depicts the evolution of rewards and parameters for EMNAS, color-
coded by generation. To improve clarity, a 2D plot displaying only rewards and
parameters is presented, with FLOPS omitted due to the similar trends observed
between FLOPS and parameters. This figure indicates successful evolution, with
rewards maximized and parameters and FLOPS minimized over time. Improved
models consistently emerge in later generations across all experiments. These
findings demonstrate the effectiveness of MOEA for NAS in identifying opti-
mal architectures for AD. Despite variations in experiment size, no consistent
advantage is observed between larger generations or population sizes, highlight-
ing the stochastic nature of the search process. While larger experiments tend
to yield better models on average across all objectives, exceptional models can



(a) Generation 10, Population 4 (b) Generation 20, Population 15

Fig. 2: Evolution of rewards and number of model parameters during the archi-
tecture search over different generations. Here, the generation bar is normalized.

still emerge from smaller searches. The increased exploration enabled by larger
experiments is evident in the distinct clusters observed in Figure 2(b).

Although EMNAS yielded satisfactory results, each generation learns from
scratch. To address this, we experiment with applying the OTL teacher-student
method to transfer the policy of the winning network to the next generation
and evaluate whether the model performs better. Table 2 compares EMNAS
and EMNAS with Optimized Transfer Learning (OTL) across six experimental
setups, using evaluation metrics such as the 25th percentile, median, 75th per-
centile, and highest reward. The ”P” under the method column indicates that
parallelization was employed during the training process. The results clearly
show that parallelization reduces runtime (in days (d)) by a factor of 2-3, with
greater speed improvements observed in larger training setups. As shown in

Table 2: Reward Comparison for 6 Experiments

Experiment 25th Percentile Median Reward 75th Percentile Max Reward Method Run Time(d)

4 populations over 10 generations 320 353 535 622 EMNAS 1.5
2 survivors per generation 335 362 384 585 OTL(P) 0.7

6 populations over 6 generations 154 280 376 482 EMNAS 1.4
3 survivors per generation 318 340 385 538 OTL(P) 0.8

10 populations over 30 generations 269 328 390 560 EMNAS 15.9
3 survivors per generation 351 388 426 579 OTL(P) 6.8

15 populations over 10 generations 275 334 403 593 EMNAS 7.7
4 survivors per generation 296 321 342 753 OTL(P) 3

15 populations over 15 generations 219 315 395 683 EMNAS 13.4
4 survivors per generation 325 355 391 584 OTL(P) 4.4

20 populations over 15 generations 189 291 351 509 EMNAS 18.6
3 survivors per generation 280 323 367 604 OTL(P) 6.3

the Table 2, OTL generally outperforms the basic EMNAS method 60% of the
time when comparing maximum rewards. However, OTL consistently surpasses
EMNAS in median reward, suggesting that while EMNAS can achieve high re-
wards, it tends to be less stable. Using OTL for knowledge transfer stabilizes
network performance in subsequent generations, ensuring consistent and accu-
rate results. Since rewards are the primary focus, FLOPs and parameter counts



are not included in the table, though they exhibit a similar performance trend.
Lastly, as seen in Table 2, the best-performing model was found in the OTL

method with a population of 15 over 10 generations, achieving a maximum
reward of 753. We fully retrained the winning model over 300 PPO iterations on
simulation data to assess how the architecture performs over full training. The
model achieved a peak total cumulative reward of 1190, a 4% increase over the
manually set architecture (reward: 1140). The stochastic nature of evolution
limits correlations between generation and population size with performance,
though larger sizes improve search space exploration and optimization potential.

5 Conclusion

This study marks the first application of EMNAS, a multi-objective NAS frame-
work, to large-scale RL in AD. Building on EMNAS’s foundation of automat-
ing network design with evolutionary algorithms, we tailored the framework for
large-scale RL and introduced parallelization to accelerate the search process
by a significant factor. These advancements enabled EMNAS to consistently
outperform manually designed architectures while reducing parameter counts.
Additionally, to avoid learning each architecture from scratch, the OTL teacher-
student method was employed to transfer policies from one generation to the
next, improving stability and efficiency with significant gains in both median
and maximum rewards. Further improvements are anticipated through concur-
rent hyperparameter and NAS optimization. Future work will focus on refining
these aspects to further enhance performance.

References

[1] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution
for image classifier architecture search. In Proceedings of the aaai conference on artificial
intelligence, volume 33, pages 4780–4789, 2019.

[2] Chakkrit Termritthikun, Yeshi Jamtsho, Jirarat Ieamsaard, Paisarn Muneesawang, and
Ivan Lee. Eeea-net: An early exit evolutionary neural architecture search. Engineering
Applications of Artificial Intelligence, 104:104397, 2021.

[3] Zhichao Lu, Ian Whalen, Vishnu Boddeti, Yashesh Dhebar, Kalyanmoy Deb, Erik Good-
man, and Wolfgang Banzhaf. Nsga-net: NAS using multi-objective genetic algorithm. In
Proceedings of the genetic and evolutionary computation conference, 2019.

[4] Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral cloning from observation.
pages 4950–4957, 07 2018.

[5] Unity3D. https://unity.com/. Accessed: 2023-03-04.

[6] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[7] Kenneth O Stanley and Risto Miikkulainen. Evolving neural networks through augmenting
topologies. Evolutionary computation, 10(2):99–127, 2002.

[8] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A fast and
elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary
computation, 6(2):182–197, 2002.

[9] David A Van Veldhuizen, Gary B Lamont, et al. Evolutionary computation and conver-
gence to a pareto front. In genetic programming conference, pages 221–228, 1998.


