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Abstract. In clinical practice, a substantial amount of data is generated
on a daily basis for diagnostic purposes. Since expensive expert knowledge
is required for data annotation in order to use this data for supervised
learning, large amounts of data often remain unused. Self-supervised
learning methods are well suited for using unlabeled data by pre-training
networks to solve pretext tasks. As medical data follow an underlying
uneven distribution of occurring diseases, they are inherently imbalanced.
This could introduce an unwanted bias during pre-training, ultimately
leading to negative consequences that may inhibit the benefits of fine-
tuning. In this work we investigate the impact of the imbalance of 2D
and 3D medical datasets used for pre-training, as well as the importance of
the type and size of the dataset used for pre-training and the pretext task.
Our findings indicate that the size of the dataset used for pre-training has
greater impact on the final tasks than its balance.

1 Introduction

Since medical imaging often is the basis for diagnosis and therapy, the amount
of data acquired is growing on a daily basis. This data can be used for the
supervised training of deep networks that can support the physician in his de-
cisions. However, this training requires labels that are assigned by medical ex-
perts and are therefore cost-intensive. This results in labeled medical datasets
being relatively small compared to datasets of e.g. natural images, despite the
large amount of data available. In order to still be able to benefit from these
unlabeled data, self-supervised learning methods (SSL) can help. These SSL
approaches use so-called pretext tasks to extract prior knowledge from the un-
labeled data itself in the form of representative features (pre-training), which
then can be used to initialize downstream, problem-specific tasks (fine-tuning).
The SSL principle can thus address the dependency on large amounts of labeled
data successfully. Due to the availability of large amounts of data of which only
a few are labeled, SSL methods are the subject of recent research [1].

However, using unlabeled data for pre-training comes with a potential down-
side: the distribution of the data is unknown. Especially medical data are inher-
ently imbalanced, due to the distribution of diseases in the population. While
the negative consequences of imbalanced class distributions in the training data



have already been extensively researched in the field of supervised learning [2],
there is little work that has dealt with the robustness of SSL methods against
the imbalance of data used for pre-training. In order to investigate whether this
imbalanced pre-trainings data distribution induces a potentially unwanted bias
that has a negative impact on the benefits of fine-tuning, and to provide recom-
mendations for the application of SSL methods with imbalanced medical data
in realistic medical scenarios, we addressed the following questions: What influ-

ence do the type, size and the imbalance of datasets used for pre-training have

on the performance of a downstream classification task? How does the pretext

task affect improvements of classification performance due to fine-tuning?

For this, we varied both the size and the class label distribution of the
following three 2D and 3D medical datasets: EyePACS [3], LUNA2016 [4] and
STOIC [5]. In this paper, we used Relative Patch Location (RPL) [6] as a
pretext task because of its simplicity. In order to evaluate the RPL pretext task
with regard to its performance and its usefulness for generating meaningful
features, a pre-training with randomly selected labels was used for comparison.

2 Related Work

Due to the different characteristics of medical images compared to natural im-
ages, there is a lot of research on how well existing pretext tasks can be applied
to medical datasets [7, 8] and the development of new pretext tasks tailored
to medical applications [9]. In addition to comparing different pretext tasks,
Zhang et al. [8] also investigated the influence of the imbalance of datasets used
for fine-tuning. They found that SSL pre-training has a negative impact on
downstream tasks when the dataset used for fine-tuning is highly imbalanced.
Using a theoretical argument, they also postulate this negative influence on a
potential imbalance in the dataset used for pre-training. Liu et al. [10] showed
that contrastive SSL methods are more robust to pre-training data imbalance
in case of natural images than supervised approaches. However, the compari-
son is made with supervised pre-training, which is rarely possible in a medical
context. Nevertheless, a small negative influence of the imbalanced data used
for pre-training is visible in the contrastive SSL methods. However, to the best
of our knowledge, there is currently no research that addresses whether the in-
herent imbalance of medical datasets used for pre-training has an impact on the
performance of a downstream task for a realistic clinical scenario.

3 Datasets and Experiments

For our experiments, we used the following datasets: EyePACS [3] consists of
35126 2D retinal images for diabetic retinopathy (DR) classification. This size
is rare for a medical dataset. Each image is labeled based on the severity of
the DR in a range from 0 (no DR) to 4 (proliferative DR). LUNA2016 [4] and
STOIC [5] are both 3D chest CT datasets. While LUNA2016, consisting of 888
CTs, was labeled for lung nodule classification, the 2000 CTs from STOIC were



labeled for classification of COVID-19. Both are binary classification problems.
Since contrastive self-supervised learning approaches frequently used in the

natural image domain, such as MoCo [11], usually require larger batch sizes, we
have used Relative Patch Location (RPL) [6] as a predictive SSL approach, as
it is easier to train and achieves similar results on medical datasets [7, 8]. In our
case, RPL divides the image/CT into 9/27 patches of equal size and passes a
randomly selected patch to the network alongside the center patch. The task of
the network as pretext task is to predict the position of the randomly selected
patch as a position index relative to the center patch. In this way, the focus of
learning should be on semantic image content, such as structural and contextual
relationships [6].

To investigate the influence of the size and imbalance of the dataset used for
pre-training on the fine-tuning, the number of elements in the dataset used for
pre-training was adjusted as well as the ratio of the rare and the frequent class
(see Equation 1).

ratio =
#rare class

#frequent class
(1)

Following Zhang et al. [8], in the case of a multi-class problem, the data used for
pre-training was divided into healthy and non-healthy. Where the dataset size
allowed, ratios were formed between 0 (only frequent class), 1 (class-balanced)
and inf (only rare class). Note that it was not always possible to obtain the
ratio inf with a large dataset size. To address the influence of the pretext task,
we conducted pre-trainings with random labels in addition to RPL. Random
Label Choice (RLC) passes patches of an image/CT to the network with a
random label that is in the same range, as in the later fine-tuning task. Since
this label can change after each epoch, it contrasts directly with a pretext task
that is supposed to learn contextual relationships and thus serves as a further
baseline. The pre-training was performed on all three datasets individually,
whereby EyePACS was only subsequently fine-tuned in-domain on EyePACS
and both 3D datasets were subsequently fine-tuned only on LUNA2016. In the
in-domain 3D experiment (pre-training and fine-tuning on LUNA2016), due to
the small size of the dataset, the dataset used for pre-training was randomly
sampled from the complete dataset used for fine-tuning while preserving the
original class label distribution. This is a realistic scenario, as if only a small
amount of data is available, all the data would usually be used for pre-training.
However, for EyePACS and STOIC, a direct separation of datasets used for
pre-training and fine-tuning was possible due to the size and the type of the
dataset. A split of 0.9, 0.05, and 0.05 for training, validation and test dataset
respectively was performed for all datasets used for pre-training. The dataset
used for fine-tuning training, validation and test split for the 3D fine-tuning on
LUNA2016 was done exactly as in Zhang et al. [8] using subsets. In order to
simulate a realistic medical scenario, only 1000 labeled images were randomly
drawn from the EyePACS dataset for fine-tuning, but with the same original
data distribution. The data split here was 0.8, 0.1, 0.1 for training, validation
and test dataset, respectively. All pre-training and fine-tuning experiments were



Table 1: Fine-tuning results for the 2D EyePACS dataset, pre-trained on Eye-
PACS, with different pretext tasks (RPL, RLC), different imbalance ratios (nat.
represents original dataset distribution), and different dataset sizes (N).

Pret.
Task

Ratio N Kappa [%] ACC [%] AUC [%] MAE

None - - 47.45±10.80 61.00±4.58 65.18±2.98 0.56±0.01

RPL 0.0 9048 49.17±4.86 62.67±3.51 63.28±2.60 0.54±0.05

RPL 0.3 9048 50.97±7.70 64.00±1.73 64.84±5.71 0.55±0.03

RPL 0.6 9048 50.08±3.98 62.33±8.50 64.02±3.46 0.55±0.03

RPL 1.0 9048 45.60±2.39 65.00±1.00 63.96±0.69 0.51±0.01

RPL inf 9048 43.50±2.94 60.00±2.65 60.94±0.26 0.56±0.02

RPL nat. 9048 51.82±1.54 59.00±3.46 63.39±3.05 0.58±0.07

RLC nat. 9048 32.01±15.65 54.67±2.08 58.81±4.26 0.66±0.03

RPL 0.0 18096 53.75±2.74 60.00±6.56 63.99±3.31 0.53±0.05

RPL 0.3 18096 53.48±3.37 65.00±3.00 64.25±2.11 0.48±0.02

RPL 0.6 18096 52.34±4.31 64.00±2.65 65.15±3.27 0.53±0.03

RPL 1.0 18096 52.77±5.24 62.67±5.77 63.72±1.07 0.52±0.09

RPL nat. 18096 52.58±2.63 61.33±4.16 64.46±2.19 0.54±0.04

RLC nat. 18096 41.43±6.83 56.33±5.69 57.48±4.65 0.62±0.05

conducted three times with different seeds.
Following Zhang et al. [8] we used a 2D or 3D U-Net [12] Encoder as back-

bone for pre-training and fine-tuning. However, the classification head was
adapted for the corresponding tasks and dimensions: 9 or 27 class classification
for RPL pre-training in 2D and 3D respectively, regression and binary classifi-
cation for fine-tuning on 2D and 3D datasets respectively.

4 Results and Discussion

Since the five classes of the EyePACS dataset follow a severity order, we modeled
the problem as a regression. Next to the Mean Absolute Error (MAE), we
measured Area Under Curve (AUC), Accuracy (ACC) and quadratic weighted
Kappa, as frequently used metrics for this dataset. In Table 1 the results of
the fine-tuning on the EyePACS dataset for different pretext tasks, sizes, and
imbalances of the EyePACS dataset used for pre-trainings are shown. The from-
scratch baseline, without any pre-training, is marked as pretext task None. The
results show that there are indeed pre-training combinations that perform worse
than no pre-training. In fact, none of the fine-tuned models has a higher AUC
than the from-scratch model. However, this may be an outlier, as all other
metrics are usually outperformed. Nevertheless, the imbalance of EyePACS used
for pre-training does not seem to be the reason for this, as no direct correlation
between imbalance and poor performance is apparent. The performance with
balanced datasets used for pre-training does not deviate significantly from the
performance of imbalanced datasets used for pre-training. Instead, it becomes



Table 2: Fine-tuning results for the 3D LUNA2016 dataset, based on LUNA2016
and STOIC pre-training, with different pretext tasks (RPL, RLC), different
imbalance ratios (nat. represents original dataset distribution), and different
dataset sizes (N).

Pret.
Task

Ratio
Pre-trained on LUNA2016 Pre-trained on STOIC

N AUC [%] ACC [%] N AUC [%] ACC [%]

None - - 94.72±0.83 98.53±0.22 - 94.72±0.83 98.53±0.22

RPL 0.0 298 96.88±0.54 98.38±0.11 590 98.05±1.00 98.59±0.42

RPL 0.3 298 97.55±1.02 97.75±0.79 590 98.02±0.20 99.07±0.14

RPL 0.6 298 96.58±0.62 98.09±1.00 590 97.88±0.63 98.75±0.22

RPL 1.0 298 96.49±0.49 98.39±0.63 590 97.62±1.01 97.71±0.87

RPL inf 298 97.01±0.65 98.16±0.09 590 98.13±0.21 98.88±0.15

RPL 0.0 590 97.37±0.51 98.99±0.30 1200 97.83±0.86 98.54±0.37

RPL 0.3 590 97.43±0.73 98.68±0.94 1200 97.24±0.62 98.89±0.40

RPL 0.6 590 97.59±1.46 99.06±0.16 1200 97.96±0.77 98.47±0.66

RPL 1.0 590 98.24±0.37 98.77±0.25 1200 97.55±0.64 98.71±0.52

RPL nat. 888 98.65±0.32 99.01±0.23 2000 98.15±0.34 98.60±0.37

RLC nat. 888 98.66±0.88 99.05±0.27 2000 98.38±1.25 98.90±0.27

clear, that both the fine-tuning with native imbalance and the averaged values
of the ratios (∆Kappa=4.13 pp) demonstrate that a pre-training with 18096
elements performs better than one with 9048 elements. A comparison of the
two pretext tasks shows that, RLC is significantly inferior to RPL. However,
a closer look at the training curves showed that the RLC training had not yet
fully converged, so that longer training times could improve the results.

The results for fine-tuning on LUNA2016 for different pretext tasks, sizes,
imbalances, and types of the dataset used for pre-training are shown in Table
2. For the LUNA2016 downstream task, which is to solve a binary classification
into benign and malignant lung nodules, ACC and AUC were calculated, with
AUC being the more important metric, as the dataset is inherently highly imbal-
anced. The AUC metric indicates that any pre-trained model performs better
than the from-scratch baseline. Similar to the experiments on EyePACS, more
data used for pre-training has a positive effect on the benefits of fine-tuning,
as shown e.g. by the AUC values for LUNA2016 at N=888 and for STOIC at
N=2000. When comparing the results between pre-training on LUNA2016 and
STOIC, it can be seen that they are both similar for N=590, which is probably
due to the fact that both datasets consist of chest CTs, albeit containing differ-
ent diseases. There is also no visible correlation between the dataset imbalance
in pre-training and performance on downstream tasks for the 3D datasets. Note
that pre-training with the RLC pretext task results in equal or better fine-tuning
performances than using the RPL pretext task. This raises doubts as to why
RPL actually works as a pretext task when it is apparently sufficient for similar
or better performance that the model weights were trained on an unsolvable
problem on data with random labels.



5 Conclusion

In this paper, we investigated whether the imbalance, size and type of medical
datasets used for pre-training affect the performance in downstream tasks. The
results of our experiments on 2D and 3D data do not support the intuitive re-
lationship postulated by Zhang et al. [8] between the imbalance of the dataset
used for pre-training and the decline of the downstream task performance. In-
stead, we confirmed a clear correlation between the size of the dataset used for
pre-training and performance on downstream tasks. Both findings imply that
it is not recommended omitting existing pre-training data just to balance the
classes. The comparatively smaller performance improvements between from-
scratch models and pre-trained models for the 2D data compared to the 3D
data may be due to the fact that the problem is more difficult to solve on Eye-
PACS, as the from-scratch results show. Whether a correlation between the
effectiveness of SSL and the difficulty of a downstream task exists, would be an
interesting follow-up question. Furthermore, the results of our RPL and RLC
experiments raise the question of the extent to which the RPL pretext task truly
learns semantic relationships, which is also worth exploring in future work.
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