Project-Specific Code Summarization with
Meta-Learning and Explainability Techniques

Quang-Huy Nguyen!?, Hoai-Phong Le'? and Bac Le!*?

! Faculty of Information Technology, University of Science,
Ho Chi Minh City, Vietnam

2 Vietnam National University, Ho Chi Minh City, Vietnam

Abstract. Code summarization generates natural language descrip-
tions for code snippets, enhancing readability and maintainability. While
current methods perform well with large-scale datasets, they struggle in
low-resource scenarios typical of smaller and newer projects. Addition-
ally, developers need summaries that capture project-specific characteris-
tics rather than generic descriptions. To address these challenges, we pro-
pose a meta-learning-based training framework that adapts the model to
individual projects as distinct tasks, even with minimal data. We introduce
a strategy for selecting support projects to boost the framework’s effec-
tiveness. Experiments on eight real-world projects show that our method
outperforms the baseline approach. Furthermore, we use explainability
techniques to clarify the prediction process and identify potential issues.

1 Introduction

In software development, programmers spend up to 58% of their time compre-
hending source code [I], and natural language summaries can significantly reduce
this effort. However, summarizing manually is often time-consuming and labor-
intensive. This emphasizes the need for automatic code summarization, a task
that generates a concise description that captures a code snippet’s functionality.

Researchers have explored various approaches, from traditional rule-based [2]
and retrieval-based [3] methods to modern deep learning techniques [4]. How-
ever, current methods still face significant challenges, particularly in adapting to
projects with diverse coding conventions and structures. Limited labeled data
further exacerbates this issue, restricting model performance in new or low-
resource projects. Furthermore, the “black-box” nature of deep learning models
hampers transparency and interpretability, limiting trust in their predictions.

To address these challenges, we propose a training framework based on
Model-Agnostic Meta-Learning (MAML) [5] for adaptable code summarization.
Our approach treats each project as a distinct task, enabling the model to adapt
to new projects with minimal data by leveraging a selected set of support projects
to enhance MAML’s effectiveness. Additionally, we analyze attention matrices
to visualize the model’s focus areas within the code and conduct causal experi-
ments to identify potential issues within the model.

Our contributions are as follows: (1) We propose a training framework for
code summarization that tackles data limitations while enabling project-specific

1) Pr inil 2) Meta-dataset selection (optional) 3) Meta-training 4) Meta-testing

Adapt | | Test

Fig. 1: The overall framework for project-specific code summarization.

Large
Dataset

VelLi’m" - Vg Louter

Similarity

t
Candidates Vo L3

Meta-Dataset
Choice

VHL%uter

®

adaptation; (2) We introduce a meta-dataset selection strategy to optimize train-
ing for target projects; (3) Extensive experiments on real-world projects validate
our approach and assess factors affecting performance; (4) We apply explainabil-
ity techniques to clarify the model’s predictions and uncover potential issues.

2 Related work

The field of automatic code summarization has evolved significantly over the past
decade. Early rule-based methods like [2] relied on handcrafted rules but strug-
gled with generalization. Information extraction techniques like [3], improved on
this by extracting relevant data from existing sources, though they mainly cap-
tured lexical information, neglecting structural aspects of code. In recent years,
deep learning models like CODE-NN [4], GNN [6], and Transformers [7] have
transformed the field by learning both semantic and structural features of code.
Some models incorporating Abstract Syntax Trees (ASTs) like Hybrid-DeepCom
[8] have significantly improved performance and generalization.

MAML [5] have shown effectiveness in adapting to new tasks with mini-
mal data in several NLP applications such as text summarization [9], machine
translation [I0]. However, their lack of interpretability poses challenges in iden-
tifying potential issues. Our approach builds on these foundations, integrating
meta-learning to enhance adaptability for project-specific tasks while also incor-
porating techniques to improve explainability in code summarization.

3 Owur appproach

3.1 Project-specific training framework with limited data

We utilized Hybrid-DeepCom [§] as the base model, which extends the vanilla
Seq2Seq architecture by incorporating structural information from AST to en-
hance performance. Instead of using GRU in the original model, we employed
Bi-GRU to better capture bidirectional dependencies in the code. Inspired by
[11], we introduce a training framework that leverages the MAML algorithm,
enabling the model to adapt effectively to target projects with limited training

data. Figure[Il provides an overview of the proposed framework, which consists
of four key steps detailed below.

Pre-training. We pre-train the model on a large-scale dataset before ap-
plying MAML. This reduces the risk of overfitting, particularly when each task’s
training data is limited [9].

Meta-dataset selection. A meta-dataset is a set of multiple projects used
to train the model with meta-learning. Selecting a suitable meta-dataset is es-
sential, as using all available projects is impractical. The meta-dataset should
consist of projects most similar to the target project to ensure strong generaliza-
tion. We use the cosine similarity between semantic representations of projects.
Each code snippet is encoded into hidden state vectors via the base model’s pre-
trained code encoder. For each project, the representations of all its snippets are
averaged. Following [12], we apply global max pooling over the vector sequence
to generate its semantic representation Rp. Finally, cosine similarity between
the target project P a candidate project Pf is computed as:

Rpia - Rpe

cosine(Rpre, Rr) = [TR

(1)

The top-ranked projects based on this similarity are selected for the meta-
dataset. We will discuss the effectiveness of this selection in Section

Meta-training. MAML operates with two optimization loops. Specifically,
each project P7"¢ in the meta-dataset is divided into a support set D;"" and a
query set DIV, In the inner loop, copied parameters 6; are updated by adapting
to the task P; using the support set D" through gradient descent for the number
of steps as Equation[2l For each 6;, we calculate the losses on the query set DY,
In the outer loop, a meta-update is performed on the original model parameters
0 by aggregating query losses across source tasks as Equation

0; = 0; — aVg, L7 (9,, DSP), (2)
M

0=0-BVy Y LO(0;, DF). (3)
i=1

where «, 8 is the learning rate for the inner and the outer loop.

Meta-testing. After meta-training, the model is fine-tuned on the support
set Dy," of the target project P* and then tested on the query set Di,” to
evaluate the model’s adaptability to the target project.

3.2 Model explainability for code summarization

Attention weight analysis. We analyze the attention weight matrices from
both the code encoder and the AST encoder to understand which parts of the
source code and AST sequence the model prioritizes during summary generation.

Input data mutation. Programmers often use meaningful names for meth-
ods and variables. This can cause the model to over-rely on these semantic cues,

BLEU METEOR ROUGE-L
Baseline Ours 1 (%) Baseline Ours 71 (%) Baseline Ours 1 (%)

Target project Full data

Spring-Boot 18.82 19.73 4.84% 23.45 24.08 2.69% 48.34 49.48 2.36%
Spring-Framework 18.73 19.33 3.20% 22.39 22.72 1.47% 46.55 47.05 1.07%
Spring-Security 16.89 17.74 5.03% 20.70 21.14 2.13% 42.79 43.61 1.92%
Guava 31.42 33.98 8.15% 28.10 29.48 4.91% 53.96 55.97 3.72%
ExoPlayer 21.01 22.30 6.14% 23.60 24.34 3.14% 48.63 49.82 2.45%
Kafka 14.29 15.52 8.61% 19.10 19.86 3.98% 39.86 41.27 3.54%
Dubbo 14.91 16.53 10.87% 18.31 19.46 6.28% 38.83 41.20 6.10%
Flink 17.00 17.35 2.06% 20.92 21.08 0.76% 43.19 43.55 0.83%
Average 19.13 20.31 6.11% 22.07 22.77 3.17% 45.27 46.49 2.75%
Samples Limited data

0 (zero-shot) 4.78 5.16 7.85% 12.71 13.22 3.96% 27.86 29.77 6.79%
50 5.83 6.46 10.58% 13.30 13.84 4.06% 29.85 31.61 5.94%
100 6.56 7.27 10.65% 13.91 14.52 4.35% 30.96 32.71 5.69%

Table 1: Comparison of performance between the baseline and our model in full
data and limited data settings (1 indicates improvement percentage).

Source Projects BLEU METEOR ROUGE-L

R1 R2 8.82 17.06 38.34
R1 R2 R3 8.78 17.14 38.36
R1 R2 R3 R4 8.96 17.15 38.80
R2 R3 R4 8.29 16.53 37.62
R3 R4 8.56 16.81 38.09

Table 2: Results on the Spring-Boot project with different meta-datasets.

potentially limiting its generalizability to code with less informative naming.
To assess this, we conduct a causal analysis by replacing function and variable
names with generic terms and evaluating the effect on performance.

4 Experiment

4.1 Experimental setup

We utilize the Java dataset provided by Hu et al. [§] for pre-training and eight
projects in the project-specific dataset from Xie et al. [II] for meta-learning.
We perform some preprocessing steps as described in [8] with some additional
steps: removing code sequences longer than 313 tokens and comments exceed-
ing 25 tokens (based on data distribution) and filtering duplicate pairs (with
an Edit Distance Ratio above 0.9). The meta-dataset includes the top three
projects from the meta-dataset selection, and the fourth-ranked project used for
validation. Batch sizes are set to 32 for pre-training and 16 for support and
query sets in meta-learning. Inner and outer loop learning rates are set at 0.05
and 0.001, respectively. Following [II], we perform 5-fold cross-validation and
simulate low-data scenarios by randomly sampling 50 or 100 training examples.
Generated summaries are evaluated using BLEU, METEOR, and ROUGE-L
metrics. For input data mutation experiments, we rename methods to “func”
and variables sequentially to “var_i”, ensuring functional equivalence as in [I3].

5
S&. ~ 2 ~ E =~ 35
= Token Density in Summary. s0
set | o oot e
name n =
of 2 g
the) z = e 2
trigger € 2
set H &
the e g
job @) E 3
name = H 2
- § "
Source code attention map =} <]
§ 3
o L}] &
™
Q)
j @

AST attention map
) . Fig. 3: Identifier density in the summaries
Fig. 2: Attention maps for our model ;4 tpe drop rate in ROUGE-L scores in

(1) and the baseline (2) correspond- .t mutation experiment.
ing to code and AST sequence.

4.2 Experimental results

We evaluated our MAMIL-based approach against conventional training in eight
projects, as shown in Table [l MAML outperforms the baseline with average
improvements of 6.11% (BLEU), 3.17% (METEOR), and 2.75% (ROUGE-L).
The gains are more noticeable on smaller datasets like Dubbo (10.87% BLEU
improvement) but lower for larger projects like Flink. In low-data and zero-shot
scenarios, our approach maintains a notable advantage, highlighting its potential
to generate quality code summaries even with scarce training data.

We also assessed the impact of meta-dataset selection by training the model
on Spring-Boot with four top-ranked source projects: Spring-Framework, Dubbo,
Flink, and Kafka. Table[2lshows that using multiple source projects significantly
boosts MAML’s performance, with the best results achieved when all four are
included. Importantly, high-ranked source projects (R1, R2) contribute to bet-
ter outcomes, demonstrating that closely related projects enable optimal model
initialization for faster and more effective adaptation. These findings highlight
the importance of meta-dataset selection in enhancing model performance.

4.3 Analysis of model results

Figure [2 shows a clear difference in attention patterns between our model and
the baseline. While our model focuses on key tokens like function and variable
names, the baseline wrongly emphasizes trivial tokens like “null” and “job”.
Both models overlook structural information in SBT sequences, relying instead
on identifiers like function and variable names. This observation underscores the
models’ dependency on semantic cues rather than the code’s underlying logic.
Data mutation experiment further confirms this in Figure Bl showing a marked
performance decline when semantic information is obscured, with the Dubbo
project suffering a 46.76% drop in ROUGE-L scores. The model performance
degradation correlates with the density of identifier tokens in the summaries,
emphasizing that projects rich in meaningful identifiers are more sensitive to

these changes. These findings challenge researchers to develop training strategies
or models enabling a deeper understanding of the code’s structure and logic.

5

Conclusion

This study introduces a MAML-based training framework for code summariza-
tion in low-resource scenarios, supported by a meta-dataset selection strategy
that boosts training efficiency and model adaptability. Using explainability tech-
niques, we find that the model heavily depends on identifier semantics while
underutilizing code structure. This underscores the need for future efforts to
better integrate structural and semantic information of source code.

References

(1]

2]
(3]

(4]

(5]

(6]

(7

8

(9]

(10]

11]

(12]

(13]

Xin Xia, Lingfeng Bao, David Lo, Zhenchang Xing, Ahmed E Hassan, and Shanping Li.
Measuring program comprehension: A large-scale field study with professionals. IEEE
Transactions on Software Engineering, 44(10):951-976, 2017.

Paul W McBurney and Collin McMillan. Automatic source code summarization of context
for java methods. IEEE Transactions on Software Engineering, 42(2):103-119, 2015.

WP Li, JF Zhao, and B Xie. Summary extraction method for code topic based on lda [j].
Computer Science, 2017(04):42-45, 2017.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. Summarizing
source code using a neural attention model. In 54th Annual Meeting of the Association
for Computational Linguistics 2016, pages 2073—2083. Association for Computational
Linguistics, 2016.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast
adaptation of deep networks. In International conference on machine learning, pages
1126-1135. PMLR, 2017.

Patrick Fernandes, Miltiadis Allamanis, and Marc Brockschmidt. Structured neural sum-
marization. arXiw preprint arXiv:1811.01824, 2018.

Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang.
A transformer-based approach for source code summarization. arXiv preprint
arXiv:2005.00653, 2020.

Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. Deep code comment generation with
hybrid lexical and syntactical information. Empirical Software Engineering, 25:2179—
2217, 2020.

Yi-Syuan Chen and Hong-Han Shuai. Meta-transfer learning for low-resource abstrac-
tive summarization. In Proceedings of the AAAI conference on artificial intelligence,
volume 35, pages 12692-12700, 2021.

Jiatao Gu, Yong Wang, Yun Chen, Kyunghyun Cho, and Victor O. K. Li. Meta-learning
for low-resource neural machine translation. In Conference on Empirical Methods in
Natural Language Processing, 2018.

Rui Xie, Tianxiang Hu, Wei Ye, and Shikun Zhang. Low-resources project-specific code
summarization. In Proceedings of the 37th IEEE/ACM International Conference on
Automated Software Engineering, pages 1-12, 2022.

Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, and Xudong Liu. Retrieval-based
neural source code summarization. In Proceedings of the ACM/IEEE /2nd International
Conference on Software Engineering, pages 1385—1397, 2020.

Ankita Nandkishor Sontakke, Manasi Patwardhan, Lovekesh Vig, Raveendra Kumar
Medicherla, Ravindra Naik, and Gautam Shroff. Code summarization: Do transform-
ers really understand code? In Deep Learning for Code Workshop, 2022.

	Introduction
	Related work
	Our appproach
	Project-specific training framework with limited data
	Model explainability for code summarization

	Experiment
	Experimental setup
	Experimental results
	Analysis of model results

	Conclusion

