
Is Q-learning an Ill-posed Problem?

Philipp Wissmann1,2, Daniel Hein1, Steffen Udluft1, and Thomas Runkler1,2 ∗

1- Siemens AG, Munich, Germany

2- TU Munich (TUM), Munich, Germany

Abstract. This paper investigates the instability of Q-learning in con-
tinuous environments, a challenge frequently encountered by practitioners.
Traditionally, this instability is attributed to bootstrapping and regression
model errors. Using a representative reinforcement learning benchmark,
we systematically examine the effects of bootstrapping and model inac-
curacies by incrementally eliminating these potential error sources. Our
findings reveal that even in relatively simple benchmarks, the fundamental
task of Q-learning – iteratively learning a Q-function from policy-specific
target values – can be inherently ill-posed and prone to failure. These
insights cast doubt on the reliability of Q-learning as a universal solution
for reinforcement learning problems.

1 Introduction & related work

Q-learning [1] is one of the most fundamental reinforcement learning (RL) con-
cepts making it the foundation of many popular RL algorithms. However, from
the perspective of an industrial practitioner it often falls short in terms of learn-
ing stability. The core idea of Q-learning is to iteratively update Q-values using
the Bellman equation. While this approach works well for table-based Markov
Decision Processes (MDPs), many relevant MDPs involve a continuous state
space, necessitating the use of a function approximator to learn the Q-function.
Additionally, the frequent requirement to learn offline means that Q-learning
combines bootstrapping, off-policy learning, and function approximation. This
combination, known as the deadly triad [2, 3], presents significant challenges.

In this paper, we investigate how to mitigate the known issues of Q-learning
on a representative RL benchmark with a continuous state space, and why
achieving stability remains challenging. We begin by using the well-established
model-free Q-learning algorithm Neural Fitted Q Iteration (NFQ) [4] as a base-
line. Next, we eliminate bootstrapping by employing the model-based boot-
strapping-free NFQ (BSF-NFQ) [5], and finally, we address model inaccuracies
by utilizing the real environment dynamics. Throughout our study, we compare
the robustness of policy learning, demonstrating significant improvements, but
we are unable to completely eliminate instability.

Finally, we show that fitting the targets can result in performance variability
among policies. By visualizing the true Q-function, we reveal a structure that
cannot be accurately approximated using a neural network (NN), rendering the

∗The project this report is based on was supported with funds from the German Federal
Ministry of Education and Research under project number 01IS24087A. The sole responsibility
for the report’s contents lies with the authors.



Q-learning task ill-posed. Furthermore, we demonstrate that the problem is
induced by the definition of the MDP and not the algorithm itself. Consequently,
this issue affects not only Q-learning but also other methods that rely on sample-
based evaluation of Q-values.

2 Experimental setup

This paper explores stability issues commonly encountered in continuous state
MDPs like inverted pendulum, acrobot and hopper [6]. Due to illustration pur-
poses, we perform the experiments on the iconic cart-pole balancing benchmark.

The state space is four-dimensional, i.e., position x, velocity ẋ, angle θ, and
angular velocity θ̇. The dataset D has been generated by a random policy on
the gym environment CartPole-v1 from the RL benchmark library Gymnasium1.
D consists of 20,000 observation tuples of form (st, at, st+1, rt). Depending on
state st and action at, the system transitions to the next state st+1 and the
agent receives a real-value reward rt ∈ R.

For the reward, we define a function that assigns 1 for an upright pole with the
cart in the center and decreases quadratically along cart position and pole angle
relative to their termination bounds, i.e., r = (1− (x/2.4)2+1− (θ/0.2095)2)/2.

In our experiments, Q-functions were approximated using NNs in a super-
vised learning manner using the Adam optimizer with learning rate 0.01, mini
batch size 100 and mean squared error as loss function. The dataset was split
into blocks of 70% and 30% (training and validation, respectively). Like in [5],
NNs with a 5-64-1 architecture were used with state-action tuples as input and
ReLU non-linearity. Early stopping was employed against overfitting, halting
training when no improvement of the validation error for 50 epochs was made
and the best parameters found so far persisted.

3 From bootstrapping to real Q-values

The NFQ algorithm fits with an NN iteratively the targets

Qi+1(st, at)← rt + γmax
at+1

Qi(st+1, at+1). (1)

In [5], an alternative algorithm called BSF-NFQ was introduced. Here, the
target calculation utilized model-based rollouts

Q̃π
MB(s, a) = R(s, a, s̃1) +

K−1∑
k=1

γkR(s̃k, π(s̃k), s̃k+1), (2)

where s̃k+1 = M(s̃k, π(s̃k)), and is calculated for a transition model M and a
reward model R which both can be learned from the offline dataset. BSF-NFQ
increased robustness significantly by calculating targets with

Qi+1(st, at)← rt + γQ̃π
MB(st+1, π(st+1)), with π(s) = argmaxa Qi(s, a). (3)

1https://gymnasium.farama.org

https://gymnasium.farama.org


As a result, the instability across iterations was reduced significantly but not
fully resolved (see Figure 1 (b)). After learning successful policies, i.e., policies
that balance successfully for 1,000 starting states for at least 5,000 steps, follow-
up iterations yielded bad policies again. This gives rise to the question if this is
due to learning imperfect transition models M on the dataset.

To eliminate this potential source of error, we replaced M with the available
benchmark transition equations and calculated the true Q-value targets using
Eq. (3). A rollout horizon of K = 1, 000 and discount factor γ = 0.99 was
chosen, resulting in a truncation error of ϵtrunc < 0.005.

Training 100 BSF-NFQ iterations on true Q-values yielded on average in 28%
of the iterations successful policies (see Figure 1 (c)). Replacing the bootstrap-
ping in NFQ by model-based policy rollout state-value estimates (BSF-NFQ)
dramatically improved the robustness of the learning algorithm and using the
real dynamics (BSF-NFQ-real-dyn) improved this even further. The reoccurring
performance drops become rarer as depicted in Figure 1, but still persist, and
thus, suggest a fundamental problem with Q-learning.

0 20 40 60 80 100
Iteration

0

1000

2000

3000

4000

5000

Av
er

ag
e 

re
tu

rn
 fo

r 5
00

0 
st

ep
s

3.8% ± 0.4% successful policies

0 20 40 60 80 100
Iteration

23.1% ± 1.1% successful policies

0 20 40 60 80 100
Iteration

28% ± 2% successful policies

0.0

0.2

0.4

0.6

0.8

1.0

Qu
ot

e 
tru

nc
at

io
n 

re
ac

he
d

(a) NFQ (b) BSF-NFQ (c) BSF-NFQ-real-dyn

Fig. 1: Iteration-wise policy performance averaged over 1,000 gym environment
episodes. Blue lines represent the average return over 1,000 episodes each with
5,000 steps. Cross markers depict the quote of episodes reaching 5,000 steps.
Green markers represent iterations where successful policies have been found.

4 Observing policy performance instabilities

Now that we have eliminated any potential transition model error by using the
true transition and reward equations, the next step is to investigate the Q-
function fitting process itself. To gain insights into the observed instability, e.g.,
the successful policy in iteration 18 yielded a bad policy in iteration 19, we save
the targets calculated with Eq. (3) based on the policy in iteration i and retrain
iteration i + 1 with NNs initialized with different seeds. The resulting policies
were tested with respect to their performance and the corresponding box-plots
for the first 20 iterations are depicted in Figure 2.



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Iteration

0

1000

2000

3000

4000

5000

Av
er

ag
e 

re
tu

rn
 fo

r 5
00

0 
st

ep
s

Fig. 2: Iteration-wise policy performance averaged over 1,000 episodes. Average
return of the original iterations are depicted in blue. The boxplots visualize
policy performance results for retraining with saved Q-value targets on 100 seeds.

Surprisingly, even within one iteration, the retrained policies show a large
spread in performance although they use the same Q-value targets. Examin-
ing potential indicators throughout the training, such as training and validation
error, showed no correlation with the resulting policy performance. Similarly, ad-
justing hyperparameters like total epochs to train or patience for early stopping
also showed no significant impact on the performance variability. Furthermore,
the large spread is observed for nearly all iterations. This points to an inherent
issue with the Q-value targets themselves since they do not necessarily seem to
be useful to learn if we want to learn a better policy.

5 An ill-posed learning task

To explore why learning Q-values even for a relatively simple benchmark like
cart-pole leads to vastly different Q-function approximations in terms of balanc-
ing performance, we conducted an in-depth analysis of the structure of the actual
Q-values. Figure 3 illustrates slices through the true Q-function by holding the
three state space variables x, ẋ, and θ̇ constant at 0, and plotting the Q-values
across 10,000 gridded values of the pole angle θ.

Figures 3 (a) and (b) display the Q-values from iterations 18 and 19 of the
Q-learning run shown in Figure 2, respectively. Notably, the policy resulting
from iteration 18 successfully balanced the pole for all starting states. However,
in the subsequent iteration 19, the policy’s performance completely collapsed.

The figures reveal the highly discontinuous structure of the true Q-values
which is particularly evident in the magnified view depicted in Figure 3 (d).
We want to emphasize that the substantial differences in the true Q-values be-
tween adjacent angle values are not caused by noise, as the policy rollouts in
Figures 3 (a), (b), and (d) are entirely deterministic.

Learning a subsequent Q-function on samples of these true Q-values fails to
capture the structure completely and results in the NN approximating an average
over the samples, which is illustrated by the line plots in Figure 3. This loss of
information is the primary source of error for the policy performance instability.



−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10 0.15 0.20
Pole angle

80

82

84

86

88

90

92

94

Q-
va

lu
es

push left - real Q-values
push right - real Q-values
push left - learned Q-function
push right - learned Q-function

(a) Policy from iteration 18

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10 0.15 0.20
Pole angle

20

30

40

50

60

70

80

90

Q-
va

lu
es

(b) Policy from iteration 19

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10 0.15 0.20
Pole angle

50

55

60

65

70

75

80

85

90

Q-
va

lu
es

(c) ϵ-greedy policy from iteration 18

−0.04 −0.03 −0.02 −0.01 0.00 0.01 0.02 0.03 0.04
Pole angle

55

60

65

70

75

80

Q-
va

lu
es

(d) Policy from iteration 19 - magnified

Fig. 3: Q-function values along 10,000 different pole angle values with cart po-
sition, cart velocity and pole velocity fixed at 0.0. To calculate the rollouts,
policies that are greedy with respect to their learned Q-value approximation
were used, or for (c) ϵ-greedy with an ϵ = 0.05. Note that the plots display
only a single Q-value for each corresponding angle. Therefore, the significant
differences between neighboring angle values indicate function discontinuities.

The subsequent policy can encounter states where the true Q-value for the
optimal action was underestimated while the true Q-value for the other action
was overestimated. This effect can result in the subsequent policy to take a sub-
optimal action and in case of the cart-pole benchmark, taking several suboptimal
actions consecutively can result in a quickly terminating trajectory. Thus, the
policy in iteration i+1 can be significantly worse than the policy from iteration
i that was used to calculate the targets.

The effect of calculating the expected rollout stochastically with an ϵ-greedy
policy, as depicted in Figure 3 (c), shows that the randomness reduces the size
of discontinuities, but does not remove them.

To demonstrate the observed discontinuities are fundamental and not solely
due to specific policies in Q-learning, Figure 4 shows the Q-function for two
simple policies. On the left, the Q-function for the policy that pushes left is
shown, on the right, for the policy acting against the pole’s angle is depicted.
In both cases, the discontinuities manifest, indicating they are a fundamental
characteristic of the underlying MDP rather than an artifact of the policy design.

These results suggest that the discontinuities can already occur if the state



−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10 0.15 0.20
Pole angle

2

4

6

8

10

Q-
va

lu
es

push left - real Q-values
push right - real Q-values
push left - learned Q-function
push right - learned Q-function

(a) Policy that always pushes left

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10 0.15 0.20
Pole angle

10

15

20

25

30

35

40

45

Q-
va

lu
es

(b) Policy against pole angle

Fig. 4: Q-function values along 10,000 different pole angle values with cart po-
sition, cart velocity and pole velocity fixed at 0.0.

space of the MDP is continuous. We argue that discontinuities in the Q-function
or return values affect any method that uses them in a sample-based manner.
This includes all methods using function approximators that have been derived
from Q-learning or are based on the evaluation of the return on a sample, as
well as that of offline policy evaluation. Although Q-learning can yield desired
policies, discontinuities can lead to performance collapse and divergent behav-
ior. Trying to fit an NN with samples from a discontinuous function makes the
problem ill-posed in the first place.

6 Conclusion

In this paper, we identified a fundamental issue with estimating Q-values and
return values. While estimating Q-values at isolated points can be relatively
effective, using a function approximator to learn them presents significant chal-
lenges. We demonstrated the dramatic impact that discontinuities in the Q-
function can have on Q-learning, potentially causing a collapse in the quality of
the learned policies. Our findings illustrate that this problem can emerge even
in simple MDPs with continuous state spaces.

References

[1] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 1992.

[2] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT
press Cambridge, 2018.

[3] Hado van Hasselt, Yotam Doron, Florian Strub, Matteo Hessel, Nicolas Sonnerat, and
Joseph Modayil. Deep reinforcement learning and the deadly triad, 2018.

[4] Martin Riedmiller. Neural fitted Q iteration–first experiences with a data efficient neural
reinforcement learning method. In ECML, number 6, 2005.

[5] Philipp Wissmann, Daniel Hein, Steffen Udluft, and Volker Tresp. Why long model-based
rollouts are no reason for bad Q-value estimates. In ESANN, 2024.

[6] Tao Wang, Sylvia Herbert, and Sicun Gao. Fractal landscapes in policy optimization. In
Advances in Neural Information Processing Systems, volume 36, pages 4277–4294, 2023.


	Introduction & related work
	Experimental setup
	From bootstrapping to real Q-values
	Observing policy performance instabilities
	An ill-posed learning task
	Conclusion

