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Abstract. Class-Incremental Learning (Class-IL) is challenging as the
model must adapt to new classes while retaining knowledge of old ones. To
avoid catastrophic forgetting in knowledge distillation with a fixed-budget
memory, exemplars from previously learned classes need to be stored. We
propose a novel sample selection method based on the coherence measure
to boost Class-IL performance. This is the first time the coherence is inves-
tigated in a deep model, specifically for Class-IL. We define the coherence
between two samples as a normalized inner product between their deep
feature extractor features. Theoretical results and extensive experiments
demonstrate the relevance of our approach.

1 Introduction

Deep Learning (DL) is challenging when it comes to continual learning, specif-
ically in scenarios involving incremental learning of new classes [1]. Class-
Incremental Learning (Class-IL) has been recently introduced to continually
build a classifier that contains all encountered classes [2, 3]. It involves incremen-
tally updating the recognition system by adding new classes from a new training
dataset (also called task) [4]. Due to storage constraints and to avoid catas-
trophic forgetting [5], the model can only access the current task’s dataset, and
a small retaining subset - called exemplar set - of the training dataset from previ-
ous tasks. Several exemplars selection strategies were proposed in the literature,
the most well-known being mean-of-features sampling, also called herding [6],
entropy-based sampling [7], and distance-based sampling [7].

In this paper, we propose a novel sample selection strategy for maximizing
exemplar diversity in Class-IL. Inspired by the coherence measure for sparse ap-
proximation, we define the coherence between two samples as a normalized inner
product between their feature vectors obtained by a DL model. Our method se-
lects diverse and informative samples while considering a fixed-budget memory
for each class, ensuring that the selected exemplars accommodate memory limits,
which is critical in IL. We provide some theoretical results by connecting it to the
herding criterion. Experiments on CIFAR-100 and MIT Indoor-67 demonstrate
that our method outperforms state-of-the-art techniques with better accuracy
in low computational complexity.



2 Background on Class-Incremental Learning

Class-IL techniques seek to effectively incorporate data from new classes into
DL models while retaining knowledge gained from earlier classes. Thus, it is
necessary to prevent catastrophic forgetting, i.e., knowledge is lost when training
on new data [5]. To address this issue, the rehearsal-based strategy has been
advocated to maintain a few samples from previously seen classes. For this
purpose, several studies relying on response-based Knowledge Distillation (KD)
have recently emerged, such as LwF [8] and iCaRL [6]. We adopt in this paper
LwF with exemplars (denoted by LwF-E) [9]. LwF trains a single network
on multiple tasks without catastrophic forgetting by applying the KD from a
large pretrained “teacher” model to a smaller “student” model. The student is
trained on new classes while learning from the teacher’s predictions. In LwF-E,
distillation loss is applied to exemplars from old and new classes.

Following the notation of [6], let X1, X2, . . . , be the sample sets where each
Xy = {xy

1, . . . , x
y
ny
} contains samples of class y ∈ N, and ny is the number of

samples. P y denotes the selected exemplars for class y, with each class storing
m exemplars. For new classes s, . . . , t, we update the model Θ1:s−1 to Θ1:t to
classify both old and new classes. This update uses a combined training set D,
which includes both new data Xs, . . . , Xt and exemplars from previous classes:

D =
⋃

y=s,...,t

{(x, y) : x ∈ Xy}
⋃

y=1,...,s−1

{(x, y) : x ∈ P y}. (1)

Let π̂k(x) and πk(x) be the temperature scaled output logits for class k ∈
{1, . . . , s − 1} of the old model Θ1:s−1 and the new model Θ1:t, respectively.
The distillation loss is applied on the training set D defined in (1) following [8]:

Ld = −
∑
x∈D

s−1∑
k=1

π̂k(x) log(πk(x)). (2)

The classification loss uses the softmax cross-entropy, calculated as:

Lc = −
∑

(x,y)∈D

t∑
k=1

δk=y log(pk(x)), (3)

where δk=y is the ground truth of the sample and pk(x) is the output softmax
probability. The overall loss is L = Lc+λLd, where λ is the distilling coefficient.

Memory constraints prevent storing all data for re-training, making exemplar
selection essential to manage memory limits, avoid catastrophic forgetting, and
maintain knowledge from previous classes. Exemplars must represent key class
characteristics while minimizing forgetting risk, with diversity being a crucial
factor. Herding [10, 6] selects exemplars for each class by choosing samples with
features closest to the class mean. For each class, embeddings ϕ(·) are extracted,
and the mean of the feature vectors is calculated by

µy =
1

ny

∑
x∈Xy

ϕ(x). (4)



At each iteration, an exemplar is chosen to minimize the mean distance from
µy when added to the selected exemplars in its class. This process is repeated
for all classes. Entropy-based sampling [7] computes the entropy of the softmax
outputs and selects exemplars with higher uncertainty for each class. Distance-
based sampling [7] selects exemplars that are closer to the decision boundary.

3 Coherence-based Criterion for Sample Selection

In continual learning, maintaining sparsity involves selecting relevant samples,
called atoms, to define the dictionary. The coherence measure, quantifying the
relevance of dictionary, corresponds to the largest correlation between atoms of
a given dictionary, namely for a dictionary of unit-norm atoms x1, x2, . . . , xm:

coh = max
i ̸=j

|⟨xi, xj⟩|. (5)

This simple measure allows a deep analysis and characterization of the quality of
the dictionary for sparse analysis and synthesis, and was extended to nonlinear
(shallow) kernel-based models with in-depth theoretical results in [11, 12]. Mo-
tivated by the underlying theoretical results of the coherence measure, several
online algorithms were proposed, such as nonlinear adaptive filtering [13] and
nonlinear principal component analysis [14], to name a few. To derive online
algorithms, atoms are selected with coherence below a threshold, namely

coh ≤ γ. (6)

The threshold controls diversity where a null value yields an orthogonal basis.
We propose in this paper a sample selection strategy by defining the coher-

ence measure within DL. By considering the coherence as a similarity measure
for DL features, we gain deeper insights than shallow versions like (5) or its
kernel-based counterpart. Let ϕ : X → IRd denote the DL feature extractor,
then the DL coherence measure is defined as

coh = max
i ̸=j

|⟨ϕ(xi), ϕ(xj)⟩|, (7)

for unit-norm embeddings; Otherwise, replace ϕ(x) with ϕ(x)/||ϕ(x)||. This
paper is the first to explore a coherence measure in DL beyond shallow ones.

To enhance Class-IL performance, the proposed coherence criterion selects
mutually least coherent examples of a class based on the DL coherence measure
(7). This sampling technique is based on feature vectors obtained from the DL
embedding, namely the last trained model so far, which means after the last
incremental step. It strives to capture the sample diversity, guaranteeing that
the chosen exemplars support effective information retention and learning in
the IL context. Rather than relying on a fixed threshold γ on the coherence
between exemplars as given in (6), we propose to work with a fixed-budget
memory for each class, which provides better memory management. With the
proposed strategy, the memory allocation grows incrementally as new classes



Algorithm 1 Coherence-based Sample Selection

Input: Sample set Xy = {xy
1 , . . . , x

y
ny
} of a class y ∈ {s, . . . , t}, current feature ex-

tractor function ϕ : X → IRd.
for each: y ∈ {s, . . . , t}
Compute Gram matrix G for all entries xy

i , x
y
j ∈ Xy

while size(G) > m×m do
Select (i, j) = argmaxi ̸=j |Gij |
Update Xy ← Xy \ {xy

i }
Remove ith row and ith column from G

end while
Output: exemplar set P y ← Xy.

are available. Each class is assigned its own fixed memory space to store m
exemplars. For a new task with classes s, . . . , t, an update procedure is called
when data for these classes is available. It adjusts the DL parameters to create
a new model Θ1:t based on KD explained in Section 2. This new model is then
used to augment the exemplars saved in memory to get P s, . . . , P t using the
new training data Xs, . . . , Xt. For each class y ∈ {s, . . . , t}, we compute the DL
coherence measure between each pair of vectors (class-wise comparisons). Let G
be the matrix of ⟨ϕ(xi), ϕ(xj)⟩ for xi, xj ∈ Xy. In order to produce a γ-coherent
set of m exemplars for each class y, we eliminate the maximum coherence values.
See Algorithm 1 for an overview of the algorithm.

We provide next an upper bound on the approximation error of the mean-
of-features µy for all samples in class as given in (4). This theoretical result
connects our criterion to the herding criterion [10, 6]. The proof is roughly
similar to the proof of [15, Theorem 1], but omitted here due to space limit.

Theorem 1. Consider the coherence-based criterion that selects m exemplars
of coherence γ from ny samples of Xy. The error of approximating µy by these
exemplars is upper bounded as follows:

∥µy − µPy∥ ≤
(
1− m

ny

)√
max
x∈Xy

||ϕ(x)||2 − γ. (8)

4 Experiments and Results

We study the performance of different sample selection strategies used in rehearsal-
based Class-IL on two different datasets: CIFAR-100 and MIT Indoor-67. CIFAR-
100 provides 32×32 color (RGB) images for 100 object classes, with 600 images
divided into 500 for training and 100 for testing for each class. We randomly
selected 50 objects classes from the CIFAR-100 dataset with 5 tasks of 10 classes
each. MIT Indoor-67 includes 67 indoor scene categories with 15 620 RGB im-
ages in total, with at least 100 images per category divided into 80 for training
and 20 for testing. This dataset has 5 tasks divided as follows: (0, 14) (i.e., 14
classes for the initial task), (1, 14), (2, 13), (3, 13), and (4, 13).



Table 1: Accuracy rates for different strategies (best results are in bold).
Task sampling strategy CIFAR-100 MIT Indoor-67

p = 2 (after 3 tasks)

herding 35.12 ± 2.54 68.92 ± 1.76
entropy 27.76 ± 1.00 69.02 ± 2.35
distance 27.14 ± 2.44 68.70 ± 1.49

coherence (ours) 35.98 ± 2.18 69.26 ± 2.57

p = 4 (after 5 tasks)

herding 28.84 ± 1.46 58.18 ± 1.17
entropy 19.96 ± 0.73 56.58 ± 1.67
distance 19.28 ± 1.02 57.14 ± 1.03

coherence (ours) 29.82 ± 2.71 58.52 ± 0.91

We implemented1 the distillation loss Ld following (2). We relied on pre-
trained ResNet-32 [16] for CIFAR-100 and pretrained MobileNet-v2 [17] for MIT
Indoor-67. For a fair comparison, we used the same settings as in [9], as given
next: We used a learning rate search scheme, a patience of 10, a learning rate
factor of 3 (i.e., the learning rate was divided by 3 each time the patience is ex-
hausted). Temperature scaling was set to T = 2 and the distilling coefficient to
λ = 1. We set a gradient clipping at 10′000, a SGD optimizer with a momentum
of 0.9, a weight decay of 0.0002 and a batch size of 64 samples. The training
stopped either if the learning rate became equal to 10−4 or after 200 epochs.

The test accuracy at task p is defined as 1
p+1

∑p
q=0 ap,q, where ap,q denotes the

accuracy of task q after learning task p, with 0 being the initial task (q ≤ p). The
test accuracies are averaged over five runs. We compare our proposed strategy
in the fixed memory per class scenario taking m = 20 exemplars per class with
existing and validated sample selection algorithms that have previously been
employed in Class-IL approaches, mainly: herding, entropy and distance. The
results presented in Table 1 show that the proposed criterion outperforms the
other strategies in terms of test accuracy.

We also measured the execution time, recording the duration of the selection
process. The experiments were performed on CIFAR-100, using 5 tasks with 10
classes each, on Google Colab, utilizing the NVIDIA T4 GPU provided by the
platform. For selecting m = 20 exemplars per class, the herding strategy took
3.6 s, while our coherence strategy required 5.1 s. For m = 200, herding took
23.4 s, whereas our coherence strategy required 3.6 s. These results revealed that
our strategy exhibited reasonable time selection compared to herding.

5 Conclusion

This paper proposed a novel criterion for efficient exemplars selection in Class-
IL, by promoting diversity among class exemplars using a DL-based coherence
measure. Theoretical results connect this criterion to herding. Experimental
results show superior performance compared to state-of-the-art techniques in
terms of accuracy and reasonable execution time. Future work will expand the
proposed sample selection strategy analysis to other DL frameworks, and beyond
Class-IL in continual learning.

1PyTorch source code from https://github.com/mmasana/FACIL
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